Cargando…
Adversarially Learned Total Variability Embedding for Speaker Recognition with Random Digit Strings
Over the recent years, various research has been conducted to investigate methods for verifying users with a short randomized pass-phrase due to the increasing demand for voice-based authentication systems. In this paper, we propose a novel technique for extracting an i-vector-like feature based on...
Autores principales: | Kang, Woo Hyun, Kim, Nam Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864864/ https://www.ncbi.nlm.nih.gov/pubmed/31671509 http://dx.doi.org/10.3390/s19214709 |
Ejemplares similares
-
Efficient Invariant Features for Sensor Variability Compensation in Speaker Recognition
por: Alimohad, Abdennour, et al.
Publicado: (2014) -
Adversarially Learning Occlusions by Backpropagation for Face Recognition
por: Zhao, Caijie, et al.
Publicado: (2023) -
Cost-Sensitive Learning for Emotion Robust Speaker Recognition
por: Li, Dongdong, et al.
Publicado: (2014) -
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022) -
Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection
por: Liu, Zhenyu, et al.
Publicado: (2023)