Cargando…

Temporal and Spectral Optimization of Vegetation Indices for Estimating Grain Nitrogen Uptake and Late-Seasonal Nitrogen Traits in Wheat

Grain nitrogen (N) uptake (GNup) in winter wheat (Triticum aestivum L.) is influenced by multiple components at the plant organ level and by pre- and post-flowering N uptake (Nup). Although spectral proximal high-throughput sensing is promising for field phenotyping, it was rarely evaluated for such...

Descripción completa

Detalles Bibliográficos
Autores principales: Prey, Lukas, Schmidhalter, Urs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864866/
https://www.ncbi.nlm.nih.gov/pubmed/31731416
http://dx.doi.org/10.3390/s19214640
Descripción
Sumario:Grain nitrogen (N) uptake (GNup) in winter wheat (Triticum aestivum L.) is influenced by multiple components at the plant organ level and by pre- and post-flowering N uptake (Nup). Although spectral proximal high-throughput sensing is promising for field phenotyping, it was rarely evaluated for such N traits. Hence, 48 spectral vegetation indices (SVIs) were evaluated on 10 measurement days for the estimation of 34 N traits in four data subsets, representing the variation generated by six high-yielding cultivars, two N fertilization levels (N), two sowing dates (SD), and two fungicide (F) intensities. Close linear relationships (p < 0.001) were found for GNup both in response to cultivar differences (Cv; R(2) = 0.52) and other agronomic treatments (R(2) = 0.67 for Cv*F*N, R(2) = 0.53 for Cv*SD*N and R(2) = 0.57 for the combined treatments), notably during milk ripeness. Especially near-infrared (NIR)/red edge SVIs, such as the NDRE_770_750, outperformed NIR/visible light (VIS) indices. Index rankings and seasonal R(2) values were similar for total Nup, while the N harvest index, which expresses the partitioning to the grain, was moderately estimated only during dough ripeness, primarily from indices detecting contrasting senescence between different fungicide intensities. Senescence-sensitive indices, including R787_R765 and TRCARI_OSAVI, performed best for N translocation efficiency and some organ-level N traits at maturity. Even though grain N concentration was best assessed by the red edge inflection point (REIP), the blue/green index (BGI) was more suited for leaf-level N traits at anthesis. When SVIs were quantitatively ranked by data subsets, a better agreement was found for GNup, total Nup, and grain N concentration than for several contributing N traits. The results suggest (i) a good general potential for estimating GNup and total Nup by (ii) red edge indices best used (iii) during milk and early dough ripeness. The estimation of contributing N traits differs according to the agronomic treatment.