Cargando…
A Multi-Column CNN Model for Emotion Recognition from EEG Signals
We present a multi-column CNN-based model for emotion recognition from EEG signals. Recently, a deep neural network is widely employed for extracting features and recognizing emotions from various biosignals including EEG signals. A decision from a single CNN-based emotion recognizing module shows i...
Autores principales: | Yang, Heekyung, Han, Jongdae, Min, Kyungha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865186/ https://www.ncbi.nlm.nih.gov/pubmed/31683608 http://dx.doi.org/10.3390/s19214736 |
Ejemplares similares
-
Emotion Variation from Controlling Contrast of Visual Contents through EEG-Based Deep Emotion Recognition
por: Yang, Heekyung, et al.
Publicado: (2020) -
EEG-Based Estimation on the Reduction of Negative Emotions for Illustrated Surgical Images
por: Yang, Heekyung, et al.
Publicado: (2020) -
Distinguishing Emotional Responses to Photographs and Artwork Using a Deep Learning-Based Approach
por: Yang, Heekyung, et al.
Publicado: (2019) -
Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network
por: Hosseini, Mohammad Saleh Khajeh, et al.
Publicado: (2023) -
Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2022)