Cargando…
Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter
IMPORTANCE: Automatic curation of consumer-generated, opioid-related social media big data may enable real-time monitoring of the opioid epidemic in the United States. OBJECTIVE: To develop and validate an automatic text-processing pipeline for geospatial and temporal analysis of opioid-mentioning s...
Autores principales: | Sarker, Abeed, Gonzalez-Hernandez, Graciela, Ruan, Yucheng, Perrone, Jeanmarie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865282/ https://www.ncbi.nlm.nih.gov/pubmed/31693125 http://dx.doi.org/10.1001/jamanetworkopen.2019.14672 |
Ejemplares similares
-
Mining social media for prescription medication abuse monitoring: a review and proposal for a data-centric framework
por: Sarker, Abeed, et al.
Publicado: (2019) -
A corpus for mining drug-related knowledge from Twitter chatter: Language models and their utilities
por: Sarker, Abeed, et al.
Publicado: (2016) -
Text classification models for the automatic detection of nonmedical prescription medication use from social media
por: Al-Garadi, Mohammed Ali, et al.
Publicado: (2021) -
A framework for multi-faceted content analysis of social media chatter regarding non-medical use of prescription medications
por: Raza, Shaina, et al.
Publicado: (2023) -
Barriers to opioid use disorder treatment: A comparison of self-reported information from social media with barriers found in literature
por: Bremer, Whitney, et al.
Publicado: (2023)