Cargando…
Classifying the antibody-negative NMO syndromes: Clinical, imaging, and metabolomic modeling
OBJECTIVE: To determine whether unsupervised principal component analysis (PCA) of comprehensive clinico-radiologic data can identify phenotypic subgroups within antibody-negative patients with overlapping features of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSDs), and...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865851/ https://www.ncbi.nlm.nih.gov/pubmed/31659123 http://dx.doi.org/10.1212/NXI.0000000000000626 |
Sumario: | OBJECTIVE: To determine whether unsupervised principal component analysis (PCA) of comprehensive clinico-radiologic data can identify phenotypic subgroups within antibody-negative patients with overlapping features of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSDs), and to validate the phenotypic classifications using high-resolution nuclear magnetic resonance (NMR) plasma metabolomics with inference to underlying pathologies. METHODS: Forty-one antibody-negative patients were recruited from the Oxford NMO Service. Thirty-six clinico-radiologic parameters, focusing on features known to distinguish NMOSD and MS, were collected to build an unbiased PCA model identifying phenotypic subgroups within antibody-negative patients. Metabolomics data from patients with relapsing-remitting MS (RRMS) (n = 34) and antibody-positive NMOSD (Ab-NMOSD) (aquaporin-4 antibody n = 54, myelin oligodendrocyte glycoprotein antibody n = 20) were used to identify discriminatory plasma metabolites separating RRMS and Ab-NMOSD. RESULTS: PCA of the 36 clinico-radiologic parameters revealed 3 phenotypic subgroups within antibody-negative patients: an MS-like subgroup, an NMOSD-like subgroup, and a low brain lesion subgroup. Supervised multivariate analysis of metabolomics data from patients with RRMS and Ab-NMOSD identified myoinositol and formate as the most discriminatory metabolites (both higher in RRMS). Within antibody-negative patients, myoinositol and formate were significantly higher in the MS-like vs NMOSD-like subgroup; myoinositol (mean [SD], 0.0023 [0.0002] vs 0.0019 [0.0003] arbitrary units [AU]; p = 0.041); formate (0.0027 [0.0006] vs 0.0019 [0.0006] AU; p = 0.010) (AU). CONCLUSIONS: PCA identifies 3 phenotypic subgroups within antibody-negative patients and that the metabolite discriminators of RRMS and Ab-NMOSD suggest that these groupings have some pathogenic meaning. Thus, the identified clinico-radiologic discriminators may provide useful diagnostic clues when seeing antibody-negative patients in the clinic. |
---|