Cargando…

Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a p...

Descripción completa

Detalles Bibliográficos
Autores principales: Tam, Oliver H., Rozhkov, Nikolay V., Shaw, Regina, Kim, Duyang, Hubbard, Isabel, Fennessey, Samantha, Propp, Nadia, Fagegaltier, Delphine, Harris, Brent T., Ostrow, Lyle W., Phatnani, Hemali, Ravits, John, Dubnau, Josh, Hammell, Molly Gale
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866666/
https://www.ncbi.nlm.nih.gov/pubmed/31665631
http://dx.doi.org/10.1016/j.celrep.2019.09.066
_version_ 1783472092495216640
author Tam, Oliver H.
Rozhkov, Nikolay V.
Shaw, Regina
Kim, Duyang
Hubbard, Isabel
Fennessey, Samantha
Propp, Nadia
Fagegaltier, Delphine
Harris, Brent T.
Ostrow, Lyle W.
Phatnani, Hemali
Ravits, John
Dubnau, Josh
Hammell, Molly Gale
author_facet Tam, Oliver H.
Rozhkov, Nikolay V.
Shaw, Regina
Kim, Duyang
Hubbard, Isabel
Fennessey, Samantha
Propp, Nadia
Fagegaltier, Delphine
Harris, Brent T.
Ostrow, Lyle W.
Phatnani, Hemali
Ravits, John
Dubnau, Josh
Hammell, Molly Gale
author_sort Tam, Oliver H.
collection PubMed
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo.
format Online
Article
Text
id pubmed-6866666
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-68666662019-11-20 Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia Tam, Oliver H. Rozhkov, Nikolay V. Shaw, Regina Kim, Duyang Hubbard, Isabel Fennessey, Samantha Propp, Nadia Fagegaltier, Delphine Harris, Brent T. Ostrow, Lyle W. Phatnani, Hemali Ravits, John Dubnau, Josh Hammell, Molly Gale Cell Rep Article Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo. 2019-10-29 /pmc/articles/PMC6866666/ /pubmed/31665631 http://dx.doi.org/10.1016/j.celrep.2019.09.066 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Tam, Oliver H.
Rozhkov, Nikolay V.
Shaw, Regina
Kim, Duyang
Hubbard, Isabel
Fennessey, Samantha
Propp, Nadia
Fagegaltier, Delphine
Harris, Brent T.
Ostrow, Lyle W.
Phatnani, Hemali
Ravits, John
Dubnau, Josh
Hammell, Molly Gale
Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
title Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
title_full Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
title_fullStr Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
title_full_unstemmed Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
title_short Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
title_sort postmortem cortex samples identify distinct molecular subtypes of als: retrotransposon activation, oxidative stress, and activated glia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866666/
https://www.ncbi.nlm.nih.gov/pubmed/31665631
http://dx.doi.org/10.1016/j.celrep.2019.09.066
work_keys_str_mv AT tamoliverh postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT rozhkovnikolayv postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT shawregina postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT kimduyang postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT hubbardisabel postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT fennesseysamantha postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT proppnadia postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT fagegaltierdelphine postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT harrisbrentt postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT ostrowlylew postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT phatnanihemali postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT ravitsjohn postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT dubnaujosh postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia
AT hammellmollygale postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia