Cargando…
Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a p...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866666/ https://www.ncbi.nlm.nih.gov/pubmed/31665631 http://dx.doi.org/10.1016/j.celrep.2019.09.066 |
_version_ | 1783472092495216640 |
---|---|
author | Tam, Oliver H. Rozhkov, Nikolay V. Shaw, Regina Kim, Duyang Hubbard, Isabel Fennessey, Samantha Propp, Nadia Fagegaltier, Delphine Harris, Brent T. Ostrow, Lyle W. Phatnani, Hemali Ravits, John Dubnau, Josh Hammell, Molly Gale |
author_facet | Tam, Oliver H. Rozhkov, Nikolay V. Shaw, Regina Kim, Duyang Hubbard, Isabel Fennessey, Samantha Propp, Nadia Fagegaltier, Delphine Harris, Brent T. Ostrow, Lyle W. Phatnani, Hemali Ravits, John Dubnau, Josh Hammell, Molly Gale |
author_sort | Tam, Oliver H. |
collection | PubMed |
description | Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo. |
format | Online Article Text |
id | pubmed-6866666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68666662019-11-20 Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia Tam, Oliver H. Rozhkov, Nikolay V. Shaw, Regina Kim, Duyang Hubbard, Isabel Fennessey, Samantha Propp, Nadia Fagegaltier, Delphine Harris, Brent T. Ostrow, Lyle W. Phatnani, Hemali Ravits, John Dubnau, Josh Hammell, Molly Gale Cell Rep Article Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo. 2019-10-29 /pmc/articles/PMC6866666/ /pubmed/31665631 http://dx.doi.org/10.1016/j.celrep.2019.09.066 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Tam, Oliver H. Rozhkov, Nikolay V. Shaw, Regina Kim, Duyang Hubbard, Isabel Fennessey, Samantha Propp, Nadia Fagegaltier, Delphine Harris, Brent T. Ostrow, Lyle W. Phatnani, Hemali Ravits, John Dubnau, Josh Hammell, Molly Gale Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia |
title | Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia |
title_full | Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia |
title_fullStr | Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia |
title_full_unstemmed | Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia |
title_short | Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia |
title_sort | postmortem cortex samples identify distinct molecular subtypes of als: retrotransposon activation, oxidative stress, and activated glia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866666/ https://www.ncbi.nlm.nih.gov/pubmed/31665631 http://dx.doi.org/10.1016/j.celrep.2019.09.066 |
work_keys_str_mv | AT tamoliverh postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT rozhkovnikolayv postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT shawregina postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT kimduyang postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT hubbardisabel postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT fennesseysamantha postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT proppnadia postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT fagegaltierdelphine postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT harrisbrentt postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT ostrowlylew postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT phatnanihemali postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT ravitsjohn postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT dubnaujosh postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia AT hammellmollygale postmortemcortexsamplesidentifydistinctmolecularsubtypesofalsretrotransposonactivationoxidativestressandactivatedglia |