Cargando…

Glycosylation of Specific Notch EGF Repeats by O-Fut1 and Fringe Regulates Notch Signaling in Drosophila

Fringe glycosyltransferases differentially modulate the binding of Notch receptors to Delta/DLL versus Serrate/Jagged ligands by adding GlcNAc to O-linked fucose on Notch epidermal growth factor-like (EGF) repeats. Although Notch has 22 O-fucosylation sites, the biologically relevant sites affecting...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandey, Ashutosh, Harvey, Beth M., Lopez, Mario F., Ito, Atsuko, Haltiwanger, Robert S., Jafar-Nejad, Hamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866671/
https://www.ncbi.nlm.nih.gov/pubmed/31722217
http://dx.doi.org/10.1016/j.celrep.2019.10.027
Descripción
Sumario:Fringe glycosyltransferases differentially modulate the binding of Notch receptors to Delta/DLL versus Serrate/Jagged ligands by adding GlcNAc to O-linked fucose on Notch epidermal growth factor-like (EGF) repeats. Although Notch has 22 O-fucosylation sites, the biologically relevant sites affecting Notch activity during animal development in vivo in the presence or absence of Fringe are not known. Using a variety of assays, we find important roles in Drosophila Notch signaling for GlcNAc-fucose-O glycans on three sites: EGF8, EGF9, and EGF12. O-Fucose monosaccharide on EGF12 (in the absence of Fringe) is essential for Delta-mediated lateral inhibition in embryos. However, wing vein development depends on the addition of GlcNAc to EGF8 and EGF12 by Fringe, with a minor contribution from EGF9. Fringe modifications of EGF8 and EGF12 together prevent Notch from cis-inhibiting Serrate, thereby promoting normal wing margin formation. Our work shows the combinatorial and context-dependent roles of GlcNAc-fucose-O glycans on these sites in Drosophila Notch-ligand interactions.