Cargando…

Can visual interpretation of NucliSens graphs reduce the need for repeat viral load testing?

BACKGROUND: In Zimbabwe, viral load (VL) testing for people living with HIV on antiretroviral therapy is performed at the National Microbiology Reference Laboratory using a NucliSens machine. Anecdotal evidence has shown that invalid graphs for “Target Not Detectable (TND)” will upon repeat VL testi...

Descripción completa

Detalles Bibliográficos
Autores principales: Handireketi, Newten, Timire, Collins, Shewade, Hemant Deepak, Munemo, Ellen, Nyagupe, Charles, Chipuka, Sandra, Sisya, Lucia, Gumbo, Hlanai, Dhitima, Ezekiel, Harries, Anthony D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867593/
https://www.ncbi.nlm.nih.gov/pubmed/31747448
http://dx.doi.org/10.1371/journal.pone.0223597
Descripción
Sumario:BACKGROUND: In Zimbabwe, viral load (VL) testing for people living with HIV on antiretroviral therapy is performed at the National Microbiology Reference Laboratory using a NucliSens machine. Anecdotal evidence has shown that invalid graphs for “Target Not Detectable (TND)” will upon repeat VL testing produce a valid result for virus not detected, therefore removing the need to repeat the test. This needs formal assessment. OBJECTIVES: To determine i) intra- and inter-rater agreement of the visual interpretation of NucliSens graphs (Target Detectable [TD], TND and No Line [NL]) between two laboratory scientists and ii) sensitivity, specificity and predictive values of the NucliSens graphs compared with repeat VL results. METHOD: Cross sectional study using secondary data. Two laboratory scientists independently rated graphs one week apart for intra-rater agreement and compared final ratings with each other for inter-rater agreement. Consensus interpretations of graphs were compared with repeat VL results. Kappa coefficients were used to obtain measures of agreement. RESULTS: There were 562 patients with NucliSens graphs and repeat VL. Kappa scores were: 0.98 (Scientist A); 0.99 (Scientist B); 0.96 (Scientist A versus Scientist B); and 0.65 (NucliSens graphs versus VL). Sensitivity, specificity, positive predictive value and negative predictive value for graphs compared with VL were 71%, 92%, 79% and 89% respectively. CONCLUSION: Intra-and inter-rater agreements were almost perfect. The negative predictive value translates to a false negative rate of 11%. If repeat VL testing is not done, the clinical consequences need to be balanced against cost savings and the risks outweigh the benefits.