Cargando…

The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination

RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to J(H)s, before joining upstream V(H)s to DJ(H) intermediates(1). In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain(2) at the 3’end of Igh contains an internal sub-d...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yu, Zhang, Xuefei, Ba, Zhaoqing, Liang, Zhuoyi, Dring, Eddie, Hu, Hongli, Lou, Jiangman, Kyritsis, Nia, Zurita, Jeffrey, Shamim, Muhammad S., Aiden, Aviva Presser, Aiden, Erez Lieberman, Alt, Frederick W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867615/
https://www.ncbi.nlm.nih.gov/pubmed/31511698
http://dx.doi.org/10.1038/s41586-019-1547-y
_version_ 1783472106107830272
author Zhang, Yu
Zhang, Xuefei
Ba, Zhaoqing
Liang, Zhuoyi
Dring, Eddie
Hu, Hongli
Lou, Jiangman
Kyritsis, Nia
Zurita, Jeffrey
Shamim, Muhammad S.
Aiden, Aviva Presser
Aiden, Erez Lieberman
Alt, Frederick W.
author_facet Zhang, Yu
Zhang, Xuefei
Ba, Zhaoqing
Liang, Zhuoyi
Dring, Eddie
Hu, Hongli
Lou, Jiangman
Kyritsis, Nia
Zurita, Jeffrey
Shamim, Muhammad S.
Aiden, Aviva Presser
Aiden, Erez Lieberman
Alt, Frederick W.
author_sort Zhang, Yu
collection PubMed
description RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to J(H)s, before joining upstream V(H)s to DJ(H) intermediates(1). In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain(2) at the 3’end of Igh contains an internal sub-domain spanning the 5’CBE anchor (IGCR1)(3), the D(H)s, and a RAG-bound recombination center (RC)(4). The RC comprises J(H)-proximal D (DQ52), 4 J(H)s, and the intronic enhancer (“iEμ”)(5). Robust RAG cleavage is restricted to paired V(D)J segments flanked by complementary recombination signal sequences (12RSSs and 23RSSs)(6). Ds are flanked downstream and upstream by 12RSSs that, respectively, mediate deletional joining with convergently-oriented J(H)-23RSSs and V(H)-23RSSs(6). Despite 12/23 compatibility, inversional D to J(H) joining via upstream D-12RSSs is rare(7,8). Plasmid-based assays attributed lack of inversional D to J(H) joining to sequence-based preference for downstream D-12RSSs(9), as opposed to putative linear scanning mechanisms(10,11). Given recent findings that RAG linearly scans convergent CBE-anchored chromatin loops(4,12-14), potentially formed by cohesin-mediated loop extrusion(15-18), we revisited a scanning role. Here, we report that J(H)-23RSS chromosomal orientation programs RC-bound RAG to linearly scan upstream chromatin in the 3’Igh sub-domain for convergently-oriented D-12RSSs and, thereby, to mediate deletional joining of all Ds, except RC-based DQ52 that joins by a diffusion-related mechanism. In a DQ52-based RC, formed in the absence of J(H)s, RAG bound by the downstream DQ52-RSS scans the downstream constant region exon-containing 3’Igh sub-domain in which scanning can be impeded by targeted nuclease-dead Cas9 (dCas9) binding, by transcription through repetitive Igh switch sequences, and by the 3’Igh CBE-based loop anchor. Notably, each scanning impediment focally increases RAG activity on potential substrate sequences within the impeded region. High resolution mapping of RC chromatin interactions reveals that such focal RAG targeting is associated with corresponding impediments to the loop extrusion process that drives chromatin past RC-bound RAG.
format Online
Article
Text
id pubmed-6867615
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-68676152020-03-11 The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination Zhang, Yu Zhang, Xuefei Ba, Zhaoqing Liang, Zhuoyi Dring, Eddie Hu, Hongli Lou, Jiangman Kyritsis, Nia Zurita, Jeffrey Shamim, Muhammad S. Aiden, Aviva Presser Aiden, Erez Lieberman Alt, Frederick W. Nature Article RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to J(H)s, before joining upstream V(H)s to DJ(H) intermediates(1). In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain(2) at the 3’end of Igh contains an internal sub-domain spanning the 5’CBE anchor (IGCR1)(3), the D(H)s, and a RAG-bound recombination center (RC)(4). The RC comprises J(H)-proximal D (DQ52), 4 J(H)s, and the intronic enhancer (“iEμ”)(5). Robust RAG cleavage is restricted to paired V(D)J segments flanked by complementary recombination signal sequences (12RSSs and 23RSSs)(6). Ds are flanked downstream and upstream by 12RSSs that, respectively, mediate deletional joining with convergently-oriented J(H)-23RSSs and V(H)-23RSSs(6). Despite 12/23 compatibility, inversional D to J(H) joining via upstream D-12RSSs is rare(7,8). Plasmid-based assays attributed lack of inversional D to J(H) joining to sequence-based preference for downstream D-12RSSs(9), as opposed to putative linear scanning mechanisms(10,11). Given recent findings that RAG linearly scans convergent CBE-anchored chromatin loops(4,12-14), potentially formed by cohesin-mediated loop extrusion(15-18), we revisited a scanning role. Here, we report that J(H)-23RSS chromosomal orientation programs RC-bound RAG to linearly scan upstream chromatin in the 3’Igh sub-domain for convergently-oriented D-12RSSs and, thereby, to mediate deletional joining of all Ds, except RC-based DQ52 that joins by a diffusion-related mechanism. In a DQ52-based RC, formed in the absence of J(H)s, RAG bound by the downstream DQ52-RSS scans the downstream constant region exon-containing 3’Igh sub-domain in which scanning can be impeded by targeted nuclease-dead Cas9 (dCas9) binding, by transcription through repetitive Igh switch sequences, and by the 3’Igh CBE-based loop anchor. Notably, each scanning impediment focally increases RAG activity on potential substrate sequences within the impeded region. High resolution mapping of RC chromatin interactions reveals that such focal RAG targeting is associated with corresponding impediments to the loop extrusion process that drives chromatin past RC-bound RAG. 2019-09-11 2019-09 /pmc/articles/PMC6867615/ /pubmed/31511698 http://dx.doi.org/10.1038/s41586-019-1547-y Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Zhang, Yu
Zhang, Xuefei
Ba, Zhaoqing
Liang, Zhuoyi
Dring, Eddie
Hu, Hongli
Lou, Jiangman
Kyritsis, Nia
Zurita, Jeffrey
Shamim, Muhammad S.
Aiden, Aviva Presser
Aiden, Erez Lieberman
Alt, Frederick W.
The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
title The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
title_full The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
title_fullStr The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
title_full_unstemmed The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
title_short The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
title_sort fundamental role of chromatin loop extrusion in physiological v(d)j recombination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867615/
https://www.ncbi.nlm.nih.gov/pubmed/31511698
http://dx.doi.org/10.1038/s41586-019-1547-y
work_keys_str_mv AT zhangyu thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT zhangxuefei thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT bazhaoqing thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT liangzhuoyi thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT dringeddie thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT huhongli thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT loujiangman thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT kyritsisnia thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT zuritajeffrey thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT shamimmuhammads thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT aidenavivapresser thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT aidenerezlieberman thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT altfrederickw thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT zhangyu fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT zhangxuefei fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT bazhaoqing fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT liangzhuoyi fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT dringeddie fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT huhongli fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT loujiangman fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT kyritsisnia fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT zuritajeffrey fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT shamimmuhammads fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT aidenavivapresser fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT aidenerezlieberman fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination
AT altfrederickw fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination