Cargando…
The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination
RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to J(H)s, before joining upstream V(H)s to DJ(H) intermediates(1). In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain(2) at the 3’end of Igh contains an internal sub-d...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867615/ https://www.ncbi.nlm.nih.gov/pubmed/31511698 http://dx.doi.org/10.1038/s41586-019-1547-y |
_version_ | 1783472106107830272 |
---|---|
author | Zhang, Yu Zhang, Xuefei Ba, Zhaoqing Liang, Zhuoyi Dring, Eddie Hu, Hongli Lou, Jiangman Kyritsis, Nia Zurita, Jeffrey Shamim, Muhammad S. Aiden, Aviva Presser Aiden, Erez Lieberman Alt, Frederick W. |
author_facet | Zhang, Yu Zhang, Xuefei Ba, Zhaoqing Liang, Zhuoyi Dring, Eddie Hu, Hongli Lou, Jiangman Kyritsis, Nia Zurita, Jeffrey Shamim, Muhammad S. Aiden, Aviva Presser Aiden, Erez Lieberman Alt, Frederick W. |
author_sort | Zhang, Yu |
collection | PubMed |
description | RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to J(H)s, before joining upstream V(H)s to DJ(H) intermediates(1). In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain(2) at the 3’end of Igh contains an internal sub-domain spanning the 5’CBE anchor (IGCR1)(3), the D(H)s, and a RAG-bound recombination center (RC)(4). The RC comprises J(H)-proximal D (DQ52), 4 J(H)s, and the intronic enhancer (“iEμ”)(5). Robust RAG cleavage is restricted to paired V(D)J segments flanked by complementary recombination signal sequences (12RSSs and 23RSSs)(6). Ds are flanked downstream and upstream by 12RSSs that, respectively, mediate deletional joining with convergently-oriented J(H)-23RSSs and V(H)-23RSSs(6). Despite 12/23 compatibility, inversional D to J(H) joining via upstream D-12RSSs is rare(7,8). Plasmid-based assays attributed lack of inversional D to J(H) joining to sequence-based preference for downstream D-12RSSs(9), as opposed to putative linear scanning mechanisms(10,11). Given recent findings that RAG linearly scans convergent CBE-anchored chromatin loops(4,12-14), potentially formed by cohesin-mediated loop extrusion(15-18), we revisited a scanning role. Here, we report that J(H)-23RSS chromosomal orientation programs RC-bound RAG to linearly scan upstream chromatin in the 3’Igh sub-domain for convergently-oriented D-12RSSs and, thereby, to mediate deletional joining of all Ds, except RC-based DQ52 that joins by a diffusion-related mechanism. In a DQ52-based RC, formed in the absence of J(H)s, RAG bound by the downstream DQ52-RSS scans the downstream constant region exon-containing 3’Igh sub-domain in which scanning can be impeded by targeted nuclease-dead Cas9 (dCas9) binding, by transcription through repetitive Igh switch sequences, and by the 3’Igh CBE-based loop anchor. Notably, each scanning impediment focally increases RAG activity on potential substrate sequences within the impeded region. High resolution mapping of RC chromatin interactions reveals that such focal RAG targeting is associated with corresponding impediments to the loop extrusion process that drives chromatin past RC-bound RAG. |
format | Online Article Text |
id | pubmed-6867615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68676152020-03-11 The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination Zhang, Yu Zhang, Xuefei Ba, Zhaoqing Liang, Zhuoyi Dring, Eddie Hu, Hongli Lou, Jiangman Kyritsis, Nia Zurita, Jeffrey Shamim, Muhammad S. Aiden, Aviva Presser Aiden, Erez Lieberman Alt, Frederick W. Nature Article RAG endonuclease initiates IgH locus (Igh) V(D)J assembly in progenitor (pro)-B cells by joining Ds to J(H)s, before joining upstream V(H)s to DJ(H) intermediates(1). In mouse pro-B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain(2) at the 3’end of Igh contains an internal sub-domain spanning the 5’CBE anchor (IGCR1)(3), the D(H)s, and a RAG-bound recombination center (RC)(4). The RC comprises J(H)-proximal D (DQ52), 4 J(H)s, and the intronic enhancer (“iEμ”)(5). Robust RAG cleavage is restricted to paired V(D)J segments flanked by complementary recombination signal sequences (12RSSs and 23RSSs)(6). Ds are flanked downstream and upstream by 12RSSs that, respectively, mediate deletional joining with convergently-oriented J(H)-23RSSs and V(H)-23RSSs(6). Despite 12/23 compatibility, inversional D to J(H) joining via upstream D-12RSSs is rare(7,8). Plasmid-based assays attributed lack of inversional D to J(H) joining to sequence-based preference for downstream D-12RSSs(9), as opposed to putative linear scanning mechanisms(10,11). Given recent findings that RAG linearly scans convergent CBE-anchored chromatin loops(4,12-14), potentially formed by cohesin-mediated loop extrusion(15-18), we revisited a scanning role. Here, we report that J(H)-23RSS chromosomal orientation programs RC-bound RAG to linearly scan upstream chromatin in the 3’Igh sub-domain for convergently-oriented D-12RSSs and, thereby, to mediate deletional joining of all Ds, except RC-based DQ52 that joins by a diffusion-related mechanism. In a DQ52-based RC, formed in the absence of J(H)s, RAG bound by the downstream DQ52-RSS scans the downstream constant region exon-containing 3’Igh sub-domain in which scanning can be impeded by targeted nuclease-dead Cas9 (dCas9) binding, by transcription through repetitive Igh switch sequences, and by the 3’Igh CBE-based loop anchor. Notably, each scanning impediment focally increases RAG activity on potential substrate sequences within the impeded region. High resolution mapping of RC chromatin interactions reveals that such focal RAG targeting is associated with corresponding impediments to the loop extrusion process that drives chromatin past RC-bound RAG. 2019-09-11 2019-09 /pmc/articles/PMC6867615/ /pubmed/31511698 http://dx.doi.org/10.1038/s41586-019-1547-y Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Zhang, Yu Zhang, Xuefei Ba, Zhaoqing Liang, Zhuoyi Dring, Eddie Hu, Hongli Lou, Jiangman Kyritsis, Nia Zurita, Jeffrey Shamim, Muhammad S. Aiden, Aviva Presser Aiden, Erez Lieberman Alt, Frederick W. The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination |
title | The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination |
title_full | The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination |
title_fullStr | The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination |
title_full_unstemmed | The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination |
title_short | The Fundamental Role of Chromatin Loop Extrusion in Physiological V(D)J Recombination |
title_sort | fundamental role of chromatin loop extrusion in physiological v(d)j recombination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867615/ https://www.ncbi.nlm.nih.gov/pubmed/31511698 http://dx.doi.org/10.1038/s41586-019-1547-y |
work_keys_str_mv | AT zhangyu thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT zhangxuefei thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT bazhaoqing thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT liangzhuoyi thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT dringeddie thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT huhongli thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT loujiangman thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT kyritsisnia thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT zuritajeffrey thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT shamimmuhammads thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT aidenavivapresser thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT aidenerezlieberman thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT altfrederickw thefundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT zhangyu fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT zhangxuefei fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT bazhaoqing fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT liangzhuoyi fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT dringeddie fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT huhongli fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT loujiangman fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT kyritsisnia fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT zuritajeffrey fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT shamimmuhammads fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT aidenavivapresser fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT aidenerezlieberman fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination AT altfrederickw fundamentalroleofchromatinloopextrusioninphysiologicalvdjrecombination |