Cargando…

The Staphylococcus aureus Transcriptome during Cystic Fibrosis Lung Infection

Laboratory models have been invaluable for the field of microbiology for over 100 years and have provided key insights into core aspects of bacterial physiology such as regulation and metabolism. However, it is important to identify the extent to which these models recapitulate bacterial physiology...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibberson, Carolyn B., Whiteley, Marvin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867902/
https://www.ncbi.nlm.nih.gov/pubmed/31744924
http://dx.doi.org/10.1128/mBio.02774-19
Descripción
Sumario:Laboratory models have been invaluable for the field of microbiology for over 100 years and have provided key insights into core aspects of bacterial physiology such as regulation and metabolism. However, it is important to identify the extent to which these models recapitulate bacterial physiology within a human infection environment. Here, we performed transcriptomics (RNA-seq), focusing on the physiology of the prominent pathogen Staphylococcus aureus in situ in human cystic fibrosis (CF) infection. Through principal-component and hierarchal clustering analyses, we found remarkable conservation in S. aureus gene expression in the CF lung despite differences in the patient clinic, clinical status, age, and therapeutic regimen. We used a machine learning approach to identify an S. aureus transcriptomic signature of 32 genes that can reliably distinguish between S. aureus transcriptomes in the CF lung and in vitro. The majority of these genes were involved in virulence and metabolism and were used to improve a common CF infection model. Collectively, these results advance our knowledge of S. aureus physiology during human CF lung infection and demonstrate how in vitro models can be improved to better capture bacterial physiology in infection.