Cargando…

Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks

The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical...

Descripción completa

Detalles Bibliográficos
Autores principales: Kungl, Akos F., Schmitt, Sebastian, Klähn, Johann, Müller, Paul, Baumbach, Andreas, Dold, Dominik, Kugele, Alexander, Müller, Eric, Koke, Christoph, Kleider, Mitja, Mauch, Christian, Breitwieser, Oliver, Leng, Luziwei, Gürtler, Nico, Güttler, Maurice, Husmann, Dan, Husmann, Kai, Hartel, Andreas, Karasenko, Vitali, Grübl, Andreas, Schemmel, Johannes, Meier, Karlheinz, Petrovici, Mihai A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868054/
https://www.ncbi.nlm.nih.gov/pubmed/31798400
http://dx.doi.org/10.3389/fnins.2019.01201
_version_ 1783472183426678784
author Kungl, Akos F.
Schmitt, Sebastian
Klähn, Johann
Müller, Paul
Baumbach, Andreas
Dold, Dominik
Kugele, Alexander
Müller, Eric
Koke, Christoph
Kleider, Mitja
Mauch, Christian
Breitwieser, Oliver
Leng, Luziwei
Gürtler, Nico
Güttler, Maurice
Husmann, Dan
Husmann, Kai
Hartel, Andreas
Karasenko, Vitali
Grübl, Andreas
Schemmel, Johannes
Meier, Karlheinz
Petrovici, Mihai A.
author_facet Kungl, Akos F.
Schmitt, Sebastian
Klähn, Johann
Müller, Paul
Baumbach, Andreas
Dold, Dominik
Kugele, Alexander
Müller, Eric
Koke, Christoph
Kleider, Mitja
Mauch, Christian
Breitwieser, Oliver
Leng, Luziwei
Gürtler, Nico
Güttler, Maurice
Husmann, Dan
Husmann, Kai
Hartel, Andreas
Karasenko, Vitali
Grübl, Andreas
Schemmel, Johannes
Meier, Karlheinz
Petrovici, Mihai A.
author_sort Kungl, Akos F.
collection PubMed
description The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.
format Online
Article
Text
id pubmed-6868054
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-68680542019-12-03 Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks Kungl, Akos F. Schmitt, Sebastian Klähn, Johann Müller, Paul Baumbach, Andreas Dold, Dominik Kugele, Alexander Müller, Eric Koke, Christoph Kleider, Mitja Mauch, Christian Breitwieser, Oliver Leng, Luziwei Gürtler, Nico Güttler, Maurice Husmann, Dan Husmann, Kai Hartel, Andreas Karasenko, Vitali Grübl, Andreas Schemmel, Johannes Meier, Karlheinz Petrovici, Mihai A. Front Neurosci Neuroscience The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications. Frontiers Media S.A. 2019-11-14 /pmc/articles/PMC6868054/ /pubmed/31798400 http://dx.doi.org/10.3389/fnins.2019.01201 Text en Copyright © 2019 Kungl, Schmitt, Klähn, Müller, Baumbach, Dold, Kugele, Müller, Koke, Kleider, Mauch, Breitwieser, Leng, Gürtler, Güttler, Husmann, Husmann, Hartel, Karasenko, Grübl, Schemmel, Meier and Petrovici. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Kungl, Akos F.
Schmitt, Sebastian
Klähn, Johann
Müller, Paul
Baumbach, Andreas
Dold, Dominik
Kugele, Alexander
Müller, Eric
Koke, Christoph
Kleider, Mitja
Mauch, Christian
Breitwieser, Oliver
Leng, Luziwei
Gürtler, Nico
Güttler, Maurice
Husmann, Dan
Husmann, Kai
Hartel, Andreas
Karasenko, Vitali
Grübl, Andreas
Schemmel, Johannes
Meier, Karlheinz
Petrovici, Mihai A.
Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
title Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
title_full Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
title_fullStr Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
title_full_unstemmed Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
title_short Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
title_sort accelerated physical emulation of bayesian inference in spiking neural networks
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868054/
https://www.ncbi.nlm.nih.gov/pubmed/31798400
http://dx.doi.org/10.3389/fnins.2019.01201
work_keys_str_mv AT kunglakosf acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT schmittsebastian acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT klahnjohann acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT mullerpaul acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT baumbachandreas acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT dolddominik acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT kugelealexander acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT mullereric acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT kokechristoph acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT kleidermitja acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT mauchchristian acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT breitwieseroliver acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT lengluziwei acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT gurtlernico acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT guttlermaurice acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT husmanndan acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT husmannkai acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT hartelandreas acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT karasenkovitali acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT grublandreas acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT schemmeljohannes acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT meierkarlheinz acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks
AT petrovicimihaia acceleratedphysicalemulationofbayesianinferenceinspikingneuralnetworks