Cargando…
Deep Learning-Based Phenotyping System With Glocal Description of Plant Anomalies and Symptoms
Recent advances in Deep Neural Networks have allowed the development of efficient and automated diagnosis systems for plant anomalies recognition. Although existing methods have shown promising results, they present several limitations to provide an appropriate characterization of the problem, espec...
Autores principales: | Fuentes, Alvaro, Yoon, Sook, Park, Dong Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868057/ https://www.ncbi.nlm.nih.gov/pubmed/31798598 http://dx.doi.org/10.3389/fpls.2019.01321 |
Ejemplares similares
-
Improving Accuracy of Tomato Plant Disease Diagnosis Based on Deep Learning With Explicit Control of Hidden Classes
por: Fuentes, Alvaro, et al.
Publicado: (2021) -
A New Deep Learning-based Dynamic Paradigm Towards Open-World Plant Disease Detection
por: Dong, Jiuqing, et al.
Publicado: (2023) -
Embracing limited and imperfect training datasets: opportunities and challenges in plant disease recognition using deep learning
por: Xu, Mingle, et al.
Publicado: (2023) -
Open Set Self and Across Domain Adaptation for Tomato Disease Recognition With Deep Learning Techniques
por: Fuentes, Alvaro, et al.
Publicado: (2021) -
High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank
por: Fuentes, Alvaro F., et al.
Publicado: (2018)