Cargando…
Handling underlying discrete variables with bivariate mixed hidden Markov models in NONMEM
Non-linear mixed effects models typically deal with stochasticity in observed processes but models accounting for only observed processes may not be the most appropriate for all data. Hidden Markov models (HMMs) characterize the relationship between observed and hidden variables where the hidden var...
Autores principales: | Brekkan, A., Jönsson, S., Karlsson, M. O., Plan, E. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868114/ https://www.ncbi.nlm.nih.gov/pubmed/31654267 http://dx.doi.org/10.1007/s10928-019-09658-z |
Ejemplares similares
-
Bivariate Markov processes and their estimation
por: Ephraim, Yariv, et al.
Publicado: (2013) -
Standard Error of Empirical Bayes Estimate in NONMEM® VI
por: Kang, Dongwoo, et al.
Publicado: (2012) -
Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose
por: Keizer, R J, et al.
Publicado: (2013) -
Multiple Imputation of Missing Covariates in NONMEM and Evaluation of the Method’s Sensitivity to η-Shrinkage
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Bivariate Discrete Poisson–Lindley Distributions
por: Papageorgiou, H., et al.
Publicado: (2022)