Cargando…
Unsupervised discovery of solid-state lithium ion conductors
Although machine learning has gained great interest in the discovery of functional materials, the advancement of reliable models is impeded by the scarcity of available materials property data. Here we propose and demonstrate a distinctive approach for materials discovery using unsupervised learning...
Autores principales: | Zhang, Ying, He, Xingfeng, Chen, Zhiqian, Bai, Qiang, Nolan, Adelaide M., Roberts, Charles A., Banerjee, Debasish, Matsunaga, Tomoya, Mo, Yifei, Ling, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868160/ https://www.ncbi.nlm.nih.gov/pubmed/31748523 http://dx.doi.org/10.1038/s41467-019-13214-1 |
Ejemplares similares
-
Origin of fast ion diffusion in super-ionic conductors
por: He, Xingfeng, et al.
Publicado: (2017) -
A prototype of dual-ion conductor for all-solid-state lithium batteries
por: Yu, Tao, et al.
Publicado: (2023) -
Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
por: Mackanic, David G., et al.
Publicado: (2019) -
Lithium crystallization at solid interfaces
por: Yang, Menghao, et al.
Publicado: (2023) -
Stacking
Faults Assist Lithium-Ion Conduction in a
Halide-Based Superionic Conductor
por: Sebti, Elias, et al.
Publicado: (2022)