Cargando…
Intrinsic dimension estimation for locally undersampled data
Identifying the minimal number of parameters needed to describe a dataset is a challenging problem known in the literature as intrinsic dimension estimation. All the existing intrinsic dimension estimators are not reliable whenever the dataset is locally undersampled, and this is at the core of the...
Autores principales: | Erba, Vittorio, Gherardi, Marco, Rotondo, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868201/ https://www.ncbi.nlm.nih.gov/pubmed/31748557 http://dx.doi.org/10.1038/s41598-019-53549-9 |
Ejemplares similares
-
Reconstruction of Self-Sparse 2D NMR Spectra from Undersampled Data in the Indirect Dimension(†)
por: Qu, Xiaobo, et al.
Publicado: (2011) -
Data segmentation based on the local intrinsic dimension
por: Allegra, Michele, et al.
Publicado: (2020) -
Undersampling bankruptcy prediction: Taiwan bankruptcy data
por: Wang, Haoming, et al.
Publicado: (2021) -
The generalized ratios intrinsic dimension estimator
por: Denti, Francesco, et al.
Publicado: (2022) -
Efficient calculation of g-factors for CG-SENSE in high dimensions: noise amplification in random undersampling
por: Akcakaya, Mehmet, et al.
Publicado: (2014)