Cargando…
Machine Learning Approach for Prescriptive Plant Breeding
We explored the capability of fusing high dimensional phenotypic trait (phenomic) data with a machine learning (ML) approach to provide plant breeders the tools to do both in-season seed yield (SY) prediction and prescriptive cultivar development for targeted agro-management practices (e.g., row spa...
Autores principales: | Parmley, Kyle A., Higgins, Race H., Ganapathysubramanian, Baskar, Sarkar, Soumik, Singh, Asheesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868245/ https://www.ncbi.nlm.nih.gov/pubmed/31748577 http://dx.doi.org/10.1038/s41598-019-53451-4 |
Ejemplares similares
-
Development of Optimized Phenomic Predictors for Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection in Soybean
por: Parmley, Kyle, et al.
Publicado: (2019) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018) -
UAS-Based Plant Phenotyping for Research and Breeding Applications
por: Guo, Wei, et al.
Publicado: (2021)