Cargando…

Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE....

Descripción completa

Detalles Bibliográficos
Autores principales: de Groot, Arjan, Siponen, Marina I, Magerand, Romaric, Eugénie, Nicolas, Martin-Arevalillo, Raquel, Doloy, Jade, Lemaire, David, Brandelet, Géraldine, Parcy, François, Dumas, Renaud, Roche, Philippe, Servant, Pascale, Confalonieri, Fabrice, Arnoux, Pascal, Pignol, David, Blanchard, Laurence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868357/
https://www.ncbi.nlm.nih.gov/pubmed/31598697
http://dx.doi.org/10.1093/nar/gkz883
_version_ 1783472241675075584
author de Groot, Arjan
Siponen, Marina I
Magerand, Romaric
Eugénie, Nicolas
Martin-Arevalillo, Raquel
Doloy, Jade
Lemaire, David
Brandelet, Géraldine
Parcy, François
Dumas, Renaud
Roche, Philippe
Servant, Pascale
Confalonieri, Fabrice
Arnoux, Pascal
Pignol, David
Blanchard, Laurence
author_facet de Groot, Arjan
Siponen, Marina I
Magerand, Romaric
Eugénie, Nicolas
Martin-Arevalillo, Raquel
Doloy, Jade
Lemaire, David
Brandelet, Géraldine
Parcy, François
Dumas, Renaud
Roche, Philippe
Servant, Pascale
Confalonieri, Fabrice
Arnoux, Pascal
Pignol, David
Blanchard, Laurence
author_sort de Groot, Arjan
collection PubMed
description Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.
format Online
Article
Text
id pubmed-6868357
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-68683572019-11-27 Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus de Groot, Arjan Siponen, Marina I Magerand, Romaric Eugénie, Nicolas Martin-Arevalillo, Raquel Doloy, Jade Lemaire, David Brandelet, Géraldine Parcy, François Dumas, Renaud Roche, Philippe Servant, Pascale Confalonieri, Fabrice Arnoux, Pascal Pignol, David Blanchard, Laurence Nucleic Acids Res Structural Biology Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor. Oxford University Press 2019-12-02 2019-10-10 /pmc/articles/PMC6868357/ /pubmed/31598697 http://dx.doi.org/10.1093/nar/gkz883 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Structural Biology
de Groot, Arjan
Siponen, Marina I
Magerand, Romaric
Eugénie, Nicolas
Martin-Arevalillo, Raquel
Doloy, Jade
Lemaire, David
Brandelet, Géraldine
Parcy, François
Dumas, Renaud
Roche, Philippe
Servant, Pascale
Confalonieri, Fabrice
Arnoux, Pascal
Pignol, David
Blanchard, Laurence
Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus
title Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus
title_full Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus
title_fullStr Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus
title_full_unstemmed Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus
title_short Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus
title_sort crystal structure of the transcriptional repressor ddro: insight into the metalloprotease/repressor-controlled radiation response in deinococcus
topic Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868357/
https://www.ncbi.nlm.nih.gov/pubmed/31598697
http://dx.doi.org/10.1093/nar/gkz883
work_keys_str_mv AT degrootarjan crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT siponenmarinai crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT magerandromaric crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT eugenienicolas crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT martinarevalilloraquel crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT doloyjade crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT lemairedavid crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT brandeletgeraldine crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT parcyfrancois crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT dumasrenaud crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT rochephilippe crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT servantpascale crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT confalonierifabrice crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT arnouxpascal crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT pignoldavid crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus
AT blanchardlaurence crystalstructureofthetranscriptionalrepressorddroinsightintothemetalloproteaserepressorcontrolledradiationresponseindeinococcus