Cargando…

Harvesting Energy from Multiple Microbial Fuel Cells with a High-Conversion Efficiency Power Management System

[Image: see text] Direct electricity production from waste biomass in a microbial fuel cell (MFC) offers the advantage of producing renewable electricity at a high Coulombic efficiency. However, low MFC voltage (below 0.5 V) necessitates the simultaneous operation of multiple MFCs controlled by a po...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Cong-Long, Tartakovsky, Boris, Woodward, Lyne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868588/
https://www.ncbi.nlm.nih.gov/pubmed/31763519
http://dx.doi.org/10.1021/acsomega.9b01854
Descripción
Sumario:[Image: see text] Direct electricity production from waste biomass in a microbial fuel cell (MFC) offers the advantage of producing renewable electricity at a high Coulombic efficiency. However, low MFC voltage (below 0.5 V) necessitates the simultaneous operation of multiple MFCs controlled by a power management system (PMS) adapted for operating bioelectrochemical systems with complex nonlinear dynamics. This work describes a novel PMS designed for efficient energy harvesting from multiple MFCs. The PMS includes a switched-capacitor-based converter, which ensures operation of each MFC at its maximum power point (MPP) by regulating the output voltage around half of its open-circuit voltage. The open-circuit voltage of each MFC is estimated online regardless of MFC internal parameter knowledge. The switched-capacitor-based converter is followed by an upconverter, which increases the output voltage to a required level. Advantages of the proposed PMS include online MPP tracking for each MFC and high (up to 85%) power conversion efficiency. Also, the PMS prevents voltage reversal by disconnecting an MFC from the circuit whenever its voltage drops below a predefined threshold. The effectiveness of the proposed PMS is verified through simulations and experimental runs.