Cargando…

Spin-orbit torque–driven propagating spin waves

Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly nonlinear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphi...

Descripción completa

Detalles Bibliográficos
Autores principales: Fulara, H., Zahedinejad, M., Khymyn, R., Awad, A. A., Muralidhar, S., Dvornik, M., Åkerman, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868678/
https://www.ncbi.nlm.nih.gov/pubmed/31799403
http://dx.doi.org/10.1126/sciadv.aax8467
_version_ 1783472318394138624
author Fulara, H.
Zahedinejad, M.
Khymyn, R.
Awad, A. A.
Muralidhar, S.
Dvornik, M.
Åkerman, J.
author_facet Fulara, H.
Zahedinejad, M.
Khymyn, R.
Awad, A. A.
Muralidhar, S.
Dvornik, M.
Åkerman, J.
author_sort Fulara, H.
collection PubMed
description Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly nonlinear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer and additional computational functionality can be achieved using SW interference, SOT-driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT-driven auto-oscillations in magnetic nanoconstrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs, enabling long-range SOT-driven SW propagation for nanomagnonics, SW logic, and neuromorphic computing, directly compatible with CMOS technology.
format Online
Article
Text
id pubmed-6868678
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-68686782019-12-03 Spin-orbit torque–driven propagating spin waves Fulara, H. Zahedinejad, M. Khymyn, R. Awad, A. A. Muralidhar, S. Dvornik, M. Åkerman, J. Sci Adv Research Articles Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly nonlinear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer and additional computational functionality can be achieved using SW interference, SOT-driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT-driven auto-oscillations in magnetic nanoconstrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs, enabling long-range SOT-driven SW propagation for nanomagnonics, SW logic, and neuromorphic computing, directly compatible with CMOS technology. American Association for the Advancement of Science 2019-09-27 /pmc/articles/PMC6868678/ /pubmed/31799403 http://dx.doi.org/10.1126/sciadv.aax8467 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Fulara, H.
Zahedinejad, M.
Khymyn, R.
Awad, A. A.
Muralidhar, S.
Dvornik, M.
Åkerman, J.
Spin-orbit torque–driven propagating spin waves
title Spin-orbit torque–driven propagating spin waves
title_full Spin-orbit torque–driven propagating spin waves
title_fullStr Spin-orbit torque–driven propagating spin waves
title_full_unstemmed Spin-orbit torque–driven propagating spin waves
title_short Spin-orbit torque–driven propagating spin waves
title_sort spin-orbit torque–driven propagating spin waves
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868678/
https://www.ncbi.nlm.nih.gov/pubmed/31799403
http://dx.doi.org/10.1126/sciadv.aax8467
work_keys_str_mv AT fularah spinorbittorquedrivenpropagatingspinwaves
AT zahedinejadm spinorbittorquedrivenpropagatingspinwaves
AT khymynr spinorbittorquedrivenpropagatingspinwaves
AT awadaa spinorbittorquedrivenpropagatingspinwaves
AT muralidhars spinorbittorquedrivenpropagatingspinwaves
AT dvornikm spinorbittorquedrivenpropagatingspinwaves
AT akermanj spinorbittorquedrivenpropagatingspinwaves