Cargando…
Predicting drug−disease associations via sigmoid kernel-based convolutional neural networks
BACKGROUND: In the process of drug development, computational drug repositioning is effective and resource-saving with regards to its important functions on identifying new drug–disease associations. Recent years have witnessed a great progression in the field of data mining with the advent of deep...
Autores principales: | Jiang, Han-Jing, You, Zhu-Hong, Huang, Yu-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868698/ https://www.ncbi.nlm.nih.gov/pubmed/31747915 http://dx.doi.org/10.1186/s12967-019-2127-5 |
Ejemplares similares
-
Predicting Drug-Disease Associations via Using Gaussian Interaction Profile and Kernel-Based Autoencoder
por: Jiang, Han-Jing, et al.
Publicado: (2019) -
PCA Based Kernel Initialization for Convolutional Neural Networks
por: Wang, Yifeng, et al.
Publicado: (2020) -
Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting
por: Khaki, Saeed, et al.
Publicado: (2020) -
Classification of Fluorescently Labelled Maize Kernels Using Convolutional Neural Networks
por: Wang, Zilong, et al.
Publicado: (2023) -
Kernel-wise difference minimization for convolutional neural network compression in metaverse
por: Chang, Yi-Ting
Publicado: (2023)