Cargando…
Rapid Spreading of a Droplet on a Thin Soap Film
[Image: see text] We study the spreading of a droplet of surfactant solution on a thin suspended soap film as a function of dynamic surface tension and volume of the droplet. Radial growth of the leading edge (R) shows power-law dependence on time with exponents ranging roughly from 0.1 to 1 for dif...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868707/ https://www.ncbi.nlm.nih.gov/pubmed/31644302 http://dx.doi.org/10.1021/acs.langmuir.9b02274 |
Sumario: | [Image: see text] We study the spreading of a droplet of surfactant solution on a thin suspended soap film as a function of dynamic surface tension and volume of the droplet. Radial growth of the leading edge (R) shows power-law dependence on time with exponents ranging roughly from 0.1 to 1 for different surface tension differences (Δσ) between the film and the droplet. When the surface tension of the droplet is lower than the surface tension of the film (Δσ > 0), we observe rapid spreading of the droplet with R ≈ t(α), where α (0.4 < α < 1) is highly dependent on Δσ. Balance arguments assuming the spreading process is driven by Marangoni stresses versus inertial stresses yield α = 2/3. When the surface tension difference does not favor spreading (Δσ < 0), spreading still occurs but is slow with 0.1 < α < 0.2. This phenomenon could be used for stretching droplets in 2D and modifying thin suspended films. |
---|