Cargando…
A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models
BACKGROUND: Recently high-throughput technologies have been massively used alongside clinical tests to study various types of cancer. Data generated in such large-scale studies are heterogeneous, of different types and formats. With lack of effective integration strategies novel models are necessary...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868770/ https://www.ncbi.nlm.nih.gov/pubmed/31752974 http://dx.doi.org/10.1186/s13062-019-0249-6 |
_version_ | 1783472339552305152 |
---|---|
author | Mihaylov, Iliyan Kańduła, Maciej Krachunov, Milko Vassilev, Dimitar |
author_facet | Mihaylov, Iliyan Kańduła, Maciej Krachunov, Milko Vassilev, Dimitar |
author_sort | Mihaylov, Iliyan |
collection | PubMed |
description | BACKGROUND: Recently high-throughput technologies have been massively used alongside clinical tests to study various types of cancer. Data generated in such large-scale studies are heterogeneous, of different types and formats. With lack of effective integration strategies novel models are necessary for efficient and operative data integration, where both clinical and molecular information can be effectively joined for storage, access and ease of use. Such models, combined with machine learning methods for accurate prediction of survival time in cancer studies, can yield novel insights into disease development and lead to precise personalized therapies. RESULTS: We developed an approach for intelligent data integration of two cancer datasets (breast cancer and neuroblastoma) − provided in the CAMDA 2018 ‘Cancer Data Integration Challenge’, and compared models for prediction of survival time. We developed a novel semantic network-based data integration framework that utilizes NoSQL databases, where we combined clinical and expression profile data, using both raw data records and external knowledge sources. Utilizing the integrated data we introduced Tumor Integrated Clinical Feature (TICF) − a new feature for accurate prediction of patient survival time. Finally, we applied and validated several machine learning models for survival time prediction. CONCLUSION: We developed a framework for semantic integration of clinical and omics data that can borrow information across multiple cancer studies. By linking data with external domain knowledge sources our approach facilitates enrichment of the studied data by discovery of internal relations. The proposed and validated machine learning models for survival time prediction yielded accurate results. REVIEWERS: This article was reviewed by Eran Elhaik, Wenzhong Xiao and Carlos Loucera. |
format | Online Article Text |
id | pubmed-6868770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68687702019-12-12 A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models Mihaylov, Iliyan Kańduła, Maciej Krachunov, Milko Vassilev, Dimitar Biol Direct Research BACKGROUND: Recently high-throughput technologies have been massively used alongside clinical tests to study various types of cancer. Data generated in such large-scale studies are heterogeneous, of different types and formats. With lack of effective integration strategies novel models are necessary for efficient and operative data integration, where both clinical and molecular information can be effectively joined for storage, access and ease of use. Such models, combined with machine learning methods for accurate prediction of survival time in cancer studies, can yield novel insights into disease development and lead to precise personalized therapies. RESULTS: We developed an approach for intelligent data integration of two cancer datasets (breast cancer and neuroblastoma) − provided in the CAMDA 2018 ‘Cancer Data Integration Challenge’, and compared models for prediction of survival time. We developed a novel semantic network-based data integration framework that utilizes NoSQL databases, where we combined clinical and expression profile data, using both raw data records and external knowledge sources. Utilizing the integrated data we introduced Tumor Integrated Clinical Feature (TICF) − a new feature for accurate prediction of patient survival time. Finally, we applied and validated several machine learning models for survival time prediction. CONCLUSION: We developed a framework for semantic integration of clinical and omics data that can borrow information across multiple cancer studies. By linking data with external domain knowledge sources our approach facilitates enrichment of the studied data by discovery of internal relations. The proposed and validated machine learning models for survival time prediction yielded accurate results. REVIEWERS: This article was reviewed by Eran Elhaik, Wenzhong Xiao and Carlos Loucera. BioMed Central 2019-11-21 /pmc/articles/PMC6868770/ /pubmed/31752974 http://dx.doi.org/10.1186/s13062-019-0249-6 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Mihaylov, Iliyan Kańduła, Maciej Krachunov, Milko Vassilev, Dimitar A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
title | A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
title_full | A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
title_fullStr | A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
title_full_unstemmed | A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
title_short | A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
title_sort | novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868770/ https://www.ncbi.nlm.nih.gov/pubmed/31752974 http://dx.doi.org/10.1186/s13062-019-0249-6 |
work_keys_str_mv | AT mihayloviliyan anovelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT kandułamaciej anovelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT krachunovmilko anovelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT vassilevdimitar anovelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT mihayloviliyan novelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT kandułamaciej novelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT krachunovmilko novelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels AT vassilevdimitar novelframeworkforhorizontalandverticaldataintegrationincancerstudieswithapplicationtosurvivaltimepredictionmodels |