Cargando…
A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models
BACKGROUND: Recently high-throughput technologies have been massively used alongside clinical tests to study various types of cancer. Data generated in such large-scale studies are heterogeneous, of different types and formats. With lack of effective integration strategies novel models are necessary...
Autores principales: | Mihaylov, Iliyan, Kańduła, Maciej, Krachunov, Milko, Vassilev, Dimitar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868770/ https://www.ncbi.nlm.nih.gov/pubmed/31752974 http://dx.doi.org/10.1186/s13062-019-0249-6 |
Ejemplares similares
-
Origin Sample Prediction and Spatial Modeling of Antimicrobial Resistance in Metagenomic Sequencing Data
por: Zhelyazkova, Maya, et al.
Publicado: (2021) -
Using Machine Learning in Accuracy Assessment of Knowledge-Based Energy and Frequency Base Likelihood in Protein Structures
por: Serafimova, Katerina, et al.
Publicado: (2020) -
Experiences with workflows for automating data-intensive bioinformatics
por: Spjuth, Ola, et al.
Publicado: (2015) -
Vertical and horizontal integration of multi-omics data with miodin
por: Ulfenborg, Benjamin
Publicado: (2019) -
Horizontal and vertical integrative analysis methods for mental disorders omics data
por: Wang, Shuaichao, et al.
Publicado: (2019)