Cargando…

A novel avian isolate of hepatitis E virus from Pakistan

BACKGROUND: Avian hepatitis E virus (aHEV) has been associated with hepatitis-splenomegaly syndrome (HSS) in chickens along with asymptomatic subclinical infection in many cases. So far, four genotypes have been described, which cause infection in chickens, specifically in broiler breeders and layer...

Descripción completa

Detalles Bibliográficos
Autores principales: Iqbal, Tahir, Rashid, Umer, Idrees, Muhammad, Afroz, Amber, Kamili, Saleem, Purdy, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868781/
https://www.ncbi.nlm.nih.gov/pubmed/31753030
http://dx.doi.org/10.1186/s12985-019-1247-0
Descripción
Sumario:BACKGROUND: Avian hepatitis E virus (aHEV) has been associated with hepatitis-splenomegaly syndrome (HSS) in chickens along with asymptomatic subclinical infection in many cases. So far, four genotypes have been described, which cause infection in chickens, specifically in broiler breeders and layer chickens. In the present study, we isolated and identified two novel aHEV strains from the bile of layer chickens in Pakistan evincing clinical symptoms related to HSS. METHODOLOGY: Histology of liver and spleen tissues was carried out to observe histopathological changes in these tissues. Bile fluid and fecal suspensions were used for viral RNA isolation through MegNA pure and Trizol method which was further used for viral genome detection and characterization by cDNA synthesis and amplification of partial open reading frame (ORF) 1, ORF2 and complete ORF3. The bioinformatics tools; Molecular Evolutionary Genetics Analysis version 6.0 (MEGA 6), Mfold and ProtScale were used for phylogenic analysis, RNA secondary structure prediction and protein hydropathy analysis, respectively. RESULTS: Sequencing and phylogenetic analysis on the basis of partial methyltranferase (MeT), helicase (Hel) domain, ORF2 and complete ORF3 sequence suggests these Pakistani aHEV (Pak aHEV) isolates may belong to a Pakistani specific clade. The overall sequence similarity between the Pak aHEV sequences was 98–100%. The ORF1/ORF3 intergenic region contains a conserved cis-reactive element (CRE) and stem-loop structure (SLS). Analysis of the amino acid sequence of ORF3 indicated two hydrophobic domains (HD) and single conserved proline-rich domain (PRD) PREPSAPP (PXXPXXPP) with a single PSAP motif found in C-terminal. Amino acid changes S15 T, A31T, Q35H and G46D unique to the Pak aHEV sequences were found in the N-terminal region of ORF3. CONCLUSIONS: Our data suggests that Pak aHEV isolates may represent a novel Pakistani clade and high sequence homology to each other support the supposition they may belong to a monophyletic clade circulating in the region around Pakistan. The data presented in this study provide further information for aHEV genetic diversity, genotype mapping, global distribution and epidemiology.