Cargando…
Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model
Changing dietary protein and amino acids may impact intestinal barrier function. Experiments were conducted in broiler chickens to evaluate supplementation of L-glutamine, glycine, and L-arginine in a reduced protein (RP) diet. Experiment 1 examined the growth performance of broilers fed 5 dietary t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Poultry Science Association, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869755/ https://www.ncbi.nlm.nih.gov/pubmed/31328774 http://dx.doi.org/10.3382/ps/pez393 |
_version_ | 1783472395470766080 |
---|---|
author | Barekatain, R Chrystal, P V Howarth, G S McLaughlan, C J Gilani, S Nattrass, G S |
author_facet | Barekatain, R Chrystal, P V Howarth, G S McLaughlan, C J Gilani, S Nattrass, G S |
author_sort | Barekatain, R |
collection | PubMed |
description | Changing dietary protein and amino acids may impact intestinal barrier function. Experiments were conducted in broiler chickens to evaluate supplementation of L-glutamine, glycine, and L-arginine in a reduced protein (RP) diet. Experiment 1 examined the growth performance of broilers fed 5 dietary treatments: 1) a standard diet; 2) an RP diet (193.9 g/kg CP in grower and 176.9 g/kg CP in finisher); 3) RP diet supplemented with 10 g/kg L-Gln; 4) RP diet supplemented with 10 g/kg Gly; 5) RP diet supplemented with 5 g/kg L-Arg. Each experimental diet was replicated 6 times with 10 birds per replicate. In a subset of 96 birds, experiment 2 tested the 4 RP diets with and without dexamethasone (DEX) to induce leaky gut. Each diet was replicated 24 times. Fluorescein isothiocyanate dextran (FITC-d) was used to test intestinal permeability (IP). Gene expression of selected tight junction proteins in ileal and jejunal tissues was assayed by quantitative PCR. From day 7 to 35, the RP diet increased feed intake (FI) (P < 0.05) and body weight gain (BWG) compared with the standard diet while Gln reduced FI and BWG (P < 0.05) compared with RP. Gly had no effect on BWG or FCR. Supplementation of Arg improved FCR from day 21 to 35 and day 7 to 35. In experiment 2, Arg tended to lower FITC-d (P = 0.086). DEX increased passage of FITC-d into the serum (P < 0.001). The villi surface area was increased in birds fed higher Arg (P < 0.05). DEX and diet interacted (P < 0.01) for jejunal claudin-3 mRNA level where DEX upregulated claudin-3 for all diets except the Arg diet. In summary, with a moderate reduction of protein, satisfactory performance can be obtained. Although Gln and Gly had no demonstrable positive effect on IP and performance of broilers, increasing the dietary Arg by approximately 140% improved FCR and showed indications of improved intestinal barrier function of birds fed an RP diet under a stress model. |
format | Online Article Text |
id | pubmed-6869755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Poultry Science Association, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68697552019-11-27 Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model Barekatain, R Chrystal, P V Howarth, G S McLaughlan, C J Gilani, S Nattrass, G S Poult Sci Metabolism and Nutrition Changing dietary protein and amino acids may impact intestinal barrier function. Experiments were conducted in broiler chickens to evaluate supplementation of L-glutamine, glycine, and L-arginine in a reduced protein (RP) diet. Experiment 1 examined the growth performance of broilers fed 5 dietary treatments: 1) a standard diet; 2) an RP diet (193.9 g/kg CP in grower and 176.9 g/kg CP in finisher); 3) RP diet supplemented with 10 g/kg L-Gln; 4) RP diet supplemented with 10 g/kg Gly; 5) RP diet supplemented with 5 g/kg L-Arg. Each experimental diet was replicated 6 times with 10 birds per replicate. In a subset of 96 birds, experiment 2 tested the 4 RP diets with and without dexamethasone (DEX) to induce leaky gut. Each diet was replicated 24 times. Fluorescein isothiocyanate dextran (FITC-d) was used to test intestinal permeability (IP). Gene expression of selected tight junction proteins in ileal and jejunal tissues was assayed by quantitative PCR. From day 7 to 35, the RP diet increased feed intake (FI) (P < 0.05) and body weight gain (BWG) compared with the standard diet while Gln reduced FI and BWG (P < 0.05) compared with RP. Gly had no effect on BWG or FCR. Supplementation of Arg improved FCR from day 21 to 35 and day 7 to 35. In experiment 2, Arg tended to lower FITC-d (P = 0.086). DEX increased passage of FITC-d into the serum (P < 0.001). The villi surface area was increased in birds fed higher Arg (P < 0.05). DEX and diet interacted (P < 0.01) for jejunal claudin-3 mRNA level where DEX upregulated claudin-3 for all diets except the Arg diet. In summary, with a moderate reduction of protein, satisfactory performance can be obtained. Although Gln and Gly had no demonstrable positive effect on IP and performance of broilers, increasing the dietary Arg by approximately 140% improved FCR and showed indications of improved intestinal barrier function of birds fed an RP diet under a stress model. Poultry Science Association, Inc. 2019-12 2019-07-22 /pmc/articles/PMC6869755/ /pubmed/31328774 http://dx.doi.org/10.3382/ps/pez393 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Poultry Science Association. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. |
spellingShingle | Metabolism and Nutrition Barekatain, R Chrystal, P V Howarth, G S McLaughlan, C J Gilani, S Nattrass, G S Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
title | Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
title_full | Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
title_fullStr | Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
title_full_unstemmed | Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
title_short | Performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
title_sort | performance, intestinal permeability, and gene expression of selected tight junction proteins in broiler chickens fed reduced protein diets supplemented with arginine, glutamine, and glycine subjected to a leaky gut model |
topic | Metabolism and Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869755/ https://www.ncbi.nlm.nih.gov/pubmed/31328774 http://dx.doi.org/10.3382/ps/pez393 |
work_keys_str_mv | AT barekatainr performanceintestinalpermeabilityandgeneexpressionofselectedtightjunctionproteinsinbroilerchickensfedreducedproteindietssupplementedwitharginineglutamineandglycinesubjectedtoaleakygutmodel AT chrystalpv performanceintestinalpermeabilityandgeneexpressionofselectedtightjunctionproteinsinbroilerchickensfedreducedproteindietssupplementedwitharginineglutamineandglycinesubjectedtoaleakygutmodel AT howarthgs performanceintestinalpermeabilityandgeneexpressionofselectedtightjunctionproteinsinbroilerchickensfedreducedproteindietssupplementedwitharginineglutamineandglycinesubjectedtoaleakygutmodel AT mclaughlancj performanceintestinalpermeabilityandgeneexpressionofselectedtightjunctionproteinsinbroilerchickensfedreducedproteindietssupplementedwitharginineglutamineandglycinesubjectedtoaleakygutmodel AT gilanis performanceintestinalpermeabilityandgeneexpressionofselectedtightjunctionproteinsinbroilerchickensfedreducedproteindietssupplementedwitharginineglutamineandglycinesubjectedtoaleakygutmodel AT nattrassgs performanceintestinalpermeabilityandgeneexpressionofselectedtightjunctionproteinsinbroilerchickensfedreducedproteindietssupplementedwitharginineglutamineandglycinesubjectedtoaleakygutmodel |