Cargando…
Data-analysis strategies for image-based cell profiling
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involv...
Autores principales: | Caicedo, Juan C, Cooper, Sam, Heigwer, Florian, Warchal, Scott, Qiu, Peng, Molnar, Csaba, Vasilevich, Aliaksei S, Barry, Joseph D, Bansal, Harmanjit Singh, Kraus, Oren, Wawer, Mathias, Paavolainen, Lassi, Herrmann, Markus D, Rohban, Mohammad, Hung, Jane, Hennig, Holger, Concannon, John, Smith, Ian, Clemons, Paul A, Singh, Shantanu, Rees, Paul, Horvath, Peter, Linington, Roger G, Carpenter, Anne E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871000/ https://www.ncbi.nlm.nih.gov/pubmed/28858338 http://dx.doi.org/10.1038/nmeth.4397 |
Ejemplares similares
-
Capturing single-cell heterogeneity via data fusion improves image-based profiling
por: Rohban, Mohammad H., et al.
Publicado: (2019) -
Predicting compound activity from phenotypic profiles and chemical structures
por: Moshkov, Nikita, et al.
Publicado: (2023) -
Evolutionary design of optimal surface topographies for biomaterials
por: Vasilevich, Aliaksei, et al.
Publicado: (2020) -
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
por: Hollandi, Reka, et al.
Publicado: (2020) -
Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images
por: Caicedo, Juan C., et al.
Publicado: (2019)