Cargando…
Deep Learning for Automatically Visual Evoked Potential Classification During Surgical Decompression of Sellar Region Tumors
PURPOSE: Detection of the huge amount of data generated in real-time visual evoked potential (VEP) requires labor-intensive work and experienced electrophysiologists. This study aims to build an automatic VEP classification system by using a deep learning algorithm. METHODS: Patients with sellar reg...
Autores principales: | Qiao, Nidan, Song, Mengju, Ye, Zhao, He, Wenqiang, Ma, Zengyi, Wang, Yongfei, Zhang, Yuyan, Shou, Xuefei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871542/ https://www.ncbi.nlm.nih.gov/pubmed/31788350 http://dx.doi.org/10.1167/tvst.8.6.21 |
Ejemplares similares
-
Machine Learning Prediction of Visual Outcome after Surgical Decompression of Sellar Region Tumors
por: Qiao, Nidan, et al.
Publicado: (2022) -
Using Deep Learning for the Classification of Images Generated by Multifocal Visual Evoked Potential
por: Qiao, Nidan
Publicado: (2018) -
A systematic review on machine learning in sellar region diseases: quality and reporting items
por: Qiao, Nidan
Publicado: (2019) -
Impact of Pituitary Stalk Preservation on Tumor Recurrence/Progression and Surgically Induced Endocrinopathy After Endoscopic Endonasal Resection of Suprasellar Craniopharyngiomas
por: Chen, Zhengyuan, et al.
Publicado: (2021) -
Endoscopic endonasal pituitary adenomas surgery: the surgical experience of 178 consecutive patients and learning curve of two neurosurgeons
por: Shou, Xuefei, et al.
Publicado: (2016)