Cargando…
Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma
This study aimed to select the feature genes of hepatocellular carcinoma (HCC) with the Fisher score algorithm and to identify hub genes with the Maximal Clique Centrality (MCC) algorithm. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to exam...
Autores principales: | Li, Chengzhang, Xu, Jiucheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872594/ https://www.ncbi.nlm.nih.gov/pubmed/31754223 http://dx.doi.org/10.1038/s41598-019-53471-0 |
Ejemplares similares
-
Maximal Clique Based Influence Maximization in Networks
por: Mhadhbi, Nizar, et al.
Publicado: (2020) -
Viral Quasispecies Assembly via Maximal Clique Enumeration
por: Töpfer, Armin, et al.
Publicado: (2014) -
CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design
por: Zhang, Shaoqiang, et al.
Publicado: (2016) -
Simulating accurate and effective solutions of some nonlinear nonlocal two-point BVPs: Clique and QLM-clique matrix methods
por: Izadi, Mohammad, et al.
Publicado: (2023) -
Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks
por: Luccioli, Stefano, et al.
Publicado: (2014)