Cargando…
Spatiotemporal Comparisons Between Elite and High-Level 60 m Hurdlers
Despite the existence of literature on the athletics hurdles event, no previous studies have examined the kinematic behavior of athletes during the race. The aims of the present research were (1) to compare the spatiotemporal parameters of elite and high-level hurdlers (men and women) in the approac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872635/ https://www.ncbi.nlm.nih.gov/pubmed/31803093 http://dx.doi.org/10.3389/fpsyg.2019.02525 |
Sumario: | Despite the existence of literature on the athletics hurdles event, no previous studies have examined the kinematic behavior of athletes during the race. The aims of the present research were (1) to compare the spatiotemporal parameters of elite and high-level hurdlers (men and women) in the approach run, hurdles-unit and run-in phases and (2) to relate these parameters to the 60 m end race results. Split times, step lengths, step widths, step times, contact times and flight times were calculated for the 60 m hurdlers (n = 110) who participated in the 44th Spanish Indoor Championship and in the 12th IAAF World Indoor Championship. Both men and women elite-level hurdlers obtained shorter split times than high-level hurdlers in the approach run (δ 0.14 ± 0.01 and 0.18 ± 0.02 s, respectively), the hurdles-unit (δ 0.11 ± 0.01 and 0.13 ± 0.01 s, respectively) and the run-in (δ 0.10 ± 0.01 and 0.20 ± 0.02 s, respectively) race phases. Elite-level men athletes also presented lower step lengths in the approach run phase (δ 0.01 ± 0.00 m), greater take-off distances (δ 0.10 ± 0.03 m) and shorter landing distances (δ 0.17 ± 0.05 m) than high-level athletes, although elite-level women hurdlers only showed longer landing step length (δ 0.07 ± 0.02 m) than high-level athletes. Finally, in the run-in phase, elite-level hurdlers had longer step lengths than high-level hurdlers (men: δ 0.09 ± 0.03 m; women: δ 0.11 ± 0.03 m). Step times, contact times and flight times were also different between both levels of performance in most of the race phases. Correlational analysis with the race result showed large (r > 0.5), very large (r > 0.7), or nearly perfect (r > 0.9) relationships for most of the mentioned kinematic parameters. These results indicate that elite-level athletes were faster than high-level in the three phases of the 60 m hurdles event, specifically in some new spatiotemporal parameters (e.g. step length in the run-in phase) as well as others already studied. Accordingly, coaches and athletes should implement their training programs to have an impact on these key variables. |
---|