Cargando…
Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation
Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Lo...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872982/ https://www.ncbi.nlm.nih.gov/pubmed/27775707 http://dx.doi.org/10.1038/nmicrobiol.2016.195 |
_version_ | 1783472598982590464 |
---|---|
author | Petersen, Jillian M. Kemper, Anna Gruber-Vodicka, Harald Cardini, Ulisse van der Geest, Matthijs Kleiner, Manuel Bulgheresi, Silvia Mußmann, Marc Herbold, Craig Seah, Brandon K.B. Antony, Chakkiath Paul Liu, Dan Belitz, Alexandra Weber, Miriam |
author_facet | Petersen, Jillian M. Kemper, Anna Gruber-Vodicka, Harald Cardini, Ulisse van der Geest, Matthijs Kleiner, Manuel Bulgheresi, Silvia Mußmann, Marc Herbold, Craig Seah, Brandon K.B. Antony, Chakkiath Paul Liu, Dan Belitz, Alexandra Weber, Miriam |
author_sort | Petersen, Jillian M. |
collection | PubMed |
description | Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nmicrobiol.2016.195) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6872982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68729822019-11-25 Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation Petersen, Jillian M. Kemper, Anna Gruber-Vodicka, Harald Cardini, Ulisse van der Geest, Matthijs Kleiner, Manuel Bulgheresi, Silvia Mußmann, Marc Herbold, Craig Seah, Brandon K.B. Antony, Chakkiath Paul Liu, Dan Belitz, Alexandra Weber, Miriam Nat Microbiol Article Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nmicrobiol.2016.195) contains supplementary material, which is available to authorized users. Nature Publishing Group UK 2016-10-24 2017 /pmc/articles/PMC6872982/ /pubmed/27775707 http://dx.doi.org/10.1038/nmicrobiol.2016.195 Text en © The Author(s) 2016 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Petersen, Jillian M. Kemper, Anna Gruber-Vodicka, Harald Cardini, Ulisse van der Geest, Matthijs Kleiner, Manuel Bulgheresi, Silvia Mußmann, Marc Herbold, Craig Seah, Brandon K.B. Antony, Chakkiath Paul Liu, Dan Belitz, Alexandra Weber, Miriam Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation |
title | Chemosynthetic symbionts of marine invertebrate animals are
capable of nitrogen fixation |
title_full | Chemosynthetic symbionts of marine invertebrate animals are
capable of nitrogen fixation |
title_fullStr | Chemosynthetic symbionts of marine invertebrate animals are
capable of nitrogen fixation |
title_full_unstemmed | Chemosynthetic symbionts of marine invertebrate animals are
capable of nitrogen fixation |
title_short | Chemosynthetic symbionts of marine invertebrate animals are
capable of nitrogen fixation |
title_sort | chemosynthetic symbionts of marine invertebrate animals are
capable of nitrogen fixation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872982/ https://www.ncbi.nlm.nih.gov/pubmed/27775707 http://dx.doi.org/10.1038/nmicrobiol.2016.195 |
work_keys_str_mv | AT petersenjillianm chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT kemperanna chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT grubervodickaharald chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT cardiniulisse chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT vandergeestmatthijs chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT kleinermanuel chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT bulgheresisilvia chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT mußmannmarc chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT herboldcraig chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT seahbrandonkb chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT antonychakkiathpaul chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT liudan chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT belitzalexandra chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation AT webermiriam chemosyntheticsymbiontsofmarineinvertebrateanimalsarecapableofnitrogenfixation |