Cargando…

Electronic Screening for Alcohol Use and Brief Intervention by Email for University Students: Reanalysis of Findings From a Randomized Controlled Trial Using a Bayesian Framework

BACKGROUND: Almost a decade ago, Sweden became the first country to implement a national system enabling student health care centers across all universities to routinely administer (via email) an electronic alcohol screening and brief intervention to their students. The Alcohol email assessment and...

Descripción completa

Detalles Bibliográficos
Autor principal: Bendtsen, Marcus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873145/
https://www.ncbi.nlm.nih.gov/pubmed/31697242
http://dx.doi.org/10.2196/14419
Descripción
Sumario:BACKGROUND: Almost a decade ago, Sweden became the first country to implement a national system enabling student health care centers across all universities to routinely administer (via email) an electronic alcohol screening and brief intervention to their students. The Alcohol email assessment and feedback study dismantling effectiveness for university students (AMADEUS-1) trial aimed to assess the effect of the student health care centers’ routine practices by exploiting the lack of any standard timing for the email invitation and by masking trial participation from students. The original analyses adopted the conventional null hypothesis framework, and the results were consistently in the expected direction. However, since for some tests the P values did not pass the conventional .05 threshold, some of the analyses were necessarily inconclusive. OBJECTIVE: The outcomes of the AMADEUS-1 trial were derived from the first 3 items of the Alcohol Use Disorders Identification Test (AUDIT-C). The aim of this paper was to reanalyze the two primary outcomes of the AMADEUS-1 trial (AUDIT-C scores and prevalence of risky drinking), using the same models used in the original publication but applying a Bayesian inference framework and interpretation. METHODS: The same regression models used in the original analysis were employed in this reanalysis (linear and logistic regression). Model parameters were given uniform priors. Markov chain Monte Carlo was used for Bayesian inference, and posterior probabilities were calculated for prespecified thresholds of interest. RESULTS: Where the null hypothesis tests showed inconclusive results, the Bayesian analysis showed that offering an intervention at baseline was preferable compared to offering nothing. At follow-up, the probability of a lower AUDIT-C score among those who had been offered an intervention at baseline was greater than 95%, as was the case when comparing the prevalence of risky drinking. CONCLUSIONS: The Bayesian analysis allows for a more consistent perspective of the data collected in the trial, since dichotomization of evidence is not looked for at some arbitrary threshold. Results are presented that represent the data collected in the trial rather than trying to make conclusions about the existence of a population effect. Thus, policy makers can think about the value of keeping the national system without having to navigate the treacherous landscape of statistical significance. TRIAL REGISTRATION: ISRCTN Registry ISRCTN28328154; http://www.isrctn.com/ISRCTN28328154