Cargando…
Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation
[Image: see text] Glucosinolates (GSLs) are of interest for potential antimicrobial activity of their degradation products and exclusive presence in Brassicaceae. Compositional changes of aliphatic, benzenic, and indolic GSLs of Sinapis alba, Brassica napus, and B. juncea seeds by germination and fu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873265/ https://www.ncbi.nlm.nih.gov/pubmed/31652052 http://dx.doi.org/10.1021/acs.jafc.9b05771 |
_version_ | 1783472632099766272 |
---|---|
author | Andini, Silvia Dekker, Pieter Gruppen, Harry Araya-Cloutier, Carla Vincken, Jean-Paul |
author_facet | Andini, Silvia Dekker, Pieter Gruppen, Harry Araya-Cloutier, Carla Vincken, Jean-Paul |
author_sort | Andini, Silvia |
collection | PubMed |
description | [Image: see text] Glucosinolates (GSLs) are of interest for potential antimicrobial activity of their degradation products and exclusive presence in Brassicaceae. Compositional changes of aliphatic, benzenic, and indolic GSLs of Sinapis alba, Brassica napus, and B. juncea seeds by germination and fungal elicitation were studied. Rhizopus oryzae (nonpathogenic), Fusarium graminearum (nonpathogenic), and F. oxysporum (pathogenic) were employed. Thirty-one GSLs were detected by reversed-phase ultrahigh-performance liquid chromatography photodiode array with in-line electrospray ionization mass spectrometry (RP-UHPLC-PDA-ESI-MS(n)). Aromatic-acylated derivatives of 3-butenyl GSL, p-hydroxybenzyl GSL, and indol-3-ylmethyl GSL were for the first time tentatively annotated and confirmed to be not artifacts. For S. alba, germination, Rhizopus elicitation, and F. graminearum elicitation increased total GSL content, mainly consisting of p-hydroxybenzyl GSL, by 2–3 fold. For B. napus and B. juncea, total GSL content was unaffected by germination or elicitation. In all treatments, aliphatic GSL content was decreased (≥50%) in B. napus and remained unchanged in B. juncea. Indolic GSLs were induced in all species by germination and nonpathogenic elicitation. |
format | Online Article Text |
id | pubmed-6873265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-68732652019-11-25 Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation Andini, Silvia Dekker, Pieter Gruppen, Harry Araya-Cloutier, Carla Vincken, Jean-Paul J Agric Food Chem [Image: see text] Glucosinolates (GSLs) are of interest for potential antimicrobial activity of their degradation products and exclusive presence in Brassicaceae. Compositional changes of aliphatic, benzenic, and indolic GSLs of Sinapis alba, Brassica napus, and B. juncea seeds by germination and fungal elicitation were studied. Rhizopus oryzae (nonpathogenic), Fusarium graminearum (nonpathogenic), and F. oxysporum (pathogenic) were employed. Thirty-one GSLs were detected by reversed-phase ultrahigh-performance liquid chromatography photodiode array with in-line electrospray ionization mass spectrometry (RP-UHPLC-PDA-ESI-MS(n)). Aromatic-acylated derivatives of 3-butenyl GSL, p-hydroxybenzyl GSL, and indol-3-ylmethyl GSL were for the first time tentatively annotated and confirmed to be not artifacts. For S. alba, germination, Rhizopus elicitation, and F. graminearum elicitation increased total GSL content, mainly consisting of p-hydroxybenzyl GSL, by 2–3 fold. For B. napus and B. juncea, total GSL content was unaffected by germination or elicitation. In all treatments, aliphatic GSL content was decreased (≥50%) in B. napus and remained unchanged in B. juncea. Indolic GSLs were induced in all species by germination and nonpathogenic elicitation. American Chemical Society 2019-10-25 2019-11-20 /pmc/articles/PMC6873265/ /pubmed/31652052 http://dx.doi.org/10.1021/acs.jafc.9b05771 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Andini, Silvia Dekker, Pieter Gruppen, Harry Araya-Cloutier, Carla Vincken, Jean-Paul Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation |
title | Modulation of Glucosinolate Composition in Brassicaceae
Seeds by Germination and Fungal Elicitation |
title_full | Modulation of Glucosinolate Composition in Brassicaceae
Seeds by Germination and Fungal Elicitation |
title_fullStr | Modulation of Glucosinolate Composition in Brassicaceae
Seeds by Germination and Fungal Elicitation |
title_full_unstemmed | Modulation of Glucosinolate Composition in Brassicaceae
Seeds by Germination and Fungal Elicitation |
title_short | Modulation of Glucosinolate Composition in Brassicaceae
Seeds by Germination and Fungal Elicitation |
title_sort | modulation of glucosinolate composition in brassicaceae
seeds by germination and fungal elicitation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873265/ https://www.ncbi.nlm.nih.gov/pubmed/31652052 http://dx.doi.org/10.1021/acs.jafc.9b05771 |
work_keys_str_mv | AT andinisilvia modulationofglucosinolatecompositioninbrassicaceaeseedsbygerminationandfungalelicitation AT dekkerpieter modulationofglucosinolatecompositioninbrassicaceaeseedsbygerminationandfungalelicitation AT gruppenharry modulationofglucosinolatecompositioninbrassicaceaeseedsbygerminationandfungalelicitation AT arayacloutiercarla modulationofglucosinolatecompositioninbrassicaceaeseedsbygerminationandfungalelicitation AT vinckenjeanpaul modulationofglucosinolatecompositioninbrassicaceaeseedsbygerminationandfungalelicitation |