Cargando…
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
With the advancements in deep learning, deep generative models combined with graph neural networks have been successfully employed for data-driven molecular graph generation. Early methods based on the non-autoregressive approach have been effective in generating molecular graphs quickly and efficie...
Autores principales: | Kwon, Youngchun, Yoo, Jiho, Choi, Youn-Suk, Son, Won-Joon, Lee, Dongseon, Kang, Seokho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873411/ https://www.ncbi.nlm.nih.gov/pubmed/33430985 http://dx.doi.org/10.1186/s13321-019-0396-x |
Ejemplares similares
-
Compressed graph representation for scalable molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2020) -
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Exploring Optimal
Reaction Conditions Guided by Graph
Neural Networks and Bayesian Optimization
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Molecular search by NMR spectrum based on evaluation of matching between spectrum and molecule
por: Kwon, Youngchun, et al.
Publicado: (2021) -
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023)