Cargando…

Impact of MET alterations on targeted therapy with EGFR-tyrosine kinase inhibitors for EGFR-mutant lung cancer

EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have achieved remarkable outcomes in the treatment of patients with EGFR-mutant non-small-cell lung cancer, but acquired resistance is still the main factor restricting their long-term use. In addition to the T790 M mutation of EGFR, amplification of the M...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhe, Yang, Sen, Wang, Qiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873421/
https://www.ncbi.nlm.nih.gov/pubmed/31832192
http://dx.doi.org/10.1186/s40364-019-0179-6
Descripción
Sumario:EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have achieved remarkable outcomes in the treatment of patients with EGFR-mutant non-small-cell lung cancer, but acquired resistance is still the main factor restricting their long-term use. In addition to the T790 M mutation of EGFR, amplification of the MET (or c-MET) gene has long been recognized as an important resistance mechanism for first- or second-generation EGFR-TKIs. Recent studies suggest that a key mechanism of acquired resistance to third-generation EGFR-TKIs (such as osimertinib) may be MET amplification and/or protein overactivation, especially when they are used as a first-line treatment. Therefore, in patients resistant to first-generation EGFR-TKIs caused by MET amplification and/or protein overactivation, the combination of osimertinib with MET or MEK inhibitors may be considered.