Cargando…
Randomized SMILES strings improve the quality of molecular generative models
Recurrent Neural Networks (RNNs) trained with a set of molecules represented as unique (canonical) SMILES strings, have shown the capacity to create large chemical spaces of valid and meaningful structures. Herein we perform an extensive benchmark on models trained with subsets of GDB-13 of differen...
Autores principales: | Arús-Pous, Josep, Johansson, Simon Viet, Prykhodko, Oleksii, Bjerrum, Esben Jannik, Tyrchan, Christian, Reymond, Jean-Louis, Chen, Hongming, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873550/ https://www.ncbi.nlm.nih.gov/pubmed/33430971 http://dx.doi.org/10.1186/s13321-019-0393-0 |
Ejemplares similares
-
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020) -
A de novo molecular generation method using latent vector based generative adversarial network
por: Prykhodko, Oleksii, et al.
Publicado: (2019) -
Exploring the GDB-13 chemical space using deep generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research
por: David, Laurianne, et al.
Publicado: (2019) -
Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain
por: Thakkar, Amol, et al.
Publicado: (2019)