Cargando…

Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies

BACKGROUND: Dyslexia and Attention-deficit/hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders (estimates of 25–40% bidirectional comorbidity). Previous work has identified strong genetic and cognitive overlap between the disorders, but neural overlap is relatively unexplo...

Descripción completa

Detalles Bibliográficos
Autores principales: McGrath, Lauren M., Stoodley, Catherine J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873566/
https://www.ncbi.nlm.nih.gov/pubmed/31752659
http://dx.doi.org/10.1186/s11689-019-9287-8
Descripción
Sumario:BACKGROUND: Dyslexia and Attention-deficit/hyperactivity disorder (ADHD) are highly comorbid neurodevelopmental disorders (estimates of 25–40% bidirectional comorbidity). Previous work has identified strong genetic and cognitive overlap between the disorders, but neural overlap is relatively unexplored. This study is a systematic meta-analysis of existing voxel-based morphometry studies to determine whether there is any overlap in the gray matter correlates of both disorders. METHODS: We conducted anatomic likelihood estimate (ALE) meta-analyses of voxel-based morphometry studies in which individuals with dyslexia (15 studies; 417 cases, 416 controls) or ADHD (22 studies; 898 cases, 763 controls) were compared to typically developing controls. We generated ALE maps for dyslexia vs. controls and ADHD vs. controls using more conservative (p < .001, k = 50) and more lenient (p < .005, k = 50) thresholds. To determine the overlap of gray matter correlates of dyslexia and ADHD, we examined the statistical conjunction between the ALE maps for dyslexia vs. controls and ADHD vs. controls (false discovery rate [FDR] p < .05, k = 50, 5000 permutations). RESULTS: Results showed largely distinct gray matter differences associated with dyslexia and ADHD. There was no evidence of statistically significant gray matter overlap at our conservative threshold, and only one region of overlap in the right caudate at our more lenient threshold. Reduced gray matter in the right caudate may be relevant to shared cognitive correlates in executive functioning and/or procedural learning. The more general finding of largely distinct regional differences in gray matter between dyslexia and ADHD suggests that other neuroimaging modalities may be more sensitive to overlapping neural correlates, and that current neuroimaging recruitment approaches may be hindering progress toward uncovering neural systems associated with comorbidity. CONCLUSIONS: The current study is the first to meta-analyze overlap between gray matter differences in dyslexia and ADHD, which is a critical step toward constructing a multi-level understanding of this comorbidity that spans the genetic, neural, and cognitive levels of analysis.