Cargando…
Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873573/ https://www.ncbi.nlm.nih.gov/pubmed/31752923 http://dx.doi.org/10.1186/s12967-019-2119-5 |
_version_ | 1783472691065389056 |
---|---|
author | Weiss, Rebecca J. Bates, Sara V. Song, Ya’nan Zhang, Yue Herzberg, Emily M. Chen, Yih-Chieh Gong, Maryann Chien, Isabel Zhang, Lily Murphy, Shawn N. Gollub, Randy L. Grant, P. Ellen Ou, Yangming |
author_facet | Weiss, Rebecca J. Bates, Sara V. Song, Ya’nan Zhang, Yue Herzberg, Emily M. Chen, Yih-Chieh Gong, Maryann Chien, Isabel Zhang, Lily Murphy, Shawn N. Gollub, Randy L. Grant, P. Ellen Ou, Yangming |
author_sort | Weiss, Rebecca J. |
collection | PubMed |
description | BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration |
format | Online Article Text |
id | pubmed-6873573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68735732019-11-25 Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy Weiss, Rebecca J. Bates, Sara V. Song, Ya’nan Zhang, Yue Herzberg, Emily M. Chen, Yih-Chieh Gong, Maryann Chien, Isabel Zhang, Lily Murphy, Shawn N. Gollub, Randy L. Grant, P. Ellen Ou, Yangming J Transl Med Protocol BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration BioMed Central 2019-11-21 /pmc/articles/PMC6873573/ /pubmed/31752923 http://dx.doi.org/10.1186/s12967-019-2119-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Protocol Weiss, Rebecca J. Bates, Sara V. Song, Ya’nan Zhang, Yue Herzberg, Emily M. Chen, Yih-Chieh Gong, Maryann Chien, Isabel Zhang, Lily Murphy, Shawn N. Gollub, Randy L. Grant, P. Ellen Ou, Yangming Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy |
title | Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy |
title_full | Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy |
title_fullStr | Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy |
title_full_unstemmed | Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy |
title_short | Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy |
title_sort | mining multi-site clinical data to develop machine learning mri biomarkers: application to neonatal hypoxic ischemic encephalopathy |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873573/ https://www.ncbi.nlm.nih.gov/pubmed/31752923 http://dx.doi.org/10.1186/s12967-019-2119-5 |
work_keys_str_mv | AT weissrebeccaj miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT batessarav miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT songyanan miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT zhangyue miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT herzbergemilym miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT chenyihchieh miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT gongmaryann miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT chienisabel miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT zhanglily miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT murphyshawnn miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT gollubrandyl miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT grantpellen miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy AT ouyangming miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy |