Cargando…

Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy

BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of...

Descripción completa

Detalles Bibliográficos
Autores principales: Weiss, Rebecca J., Bates, Sara V., Song, Ya’nan, Zhang, Yue, Herzberg, Emily M., Chen, Yih-Chieh, Gong, Maryann, Chien, Isabel, Zhang, Lily, Murphy, Shawn N., Gollub, Randy L., Grant, P. Ellen, Ou, Yangming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873573/
https://www.ncbi.nlm.nih.gov/pubmed/31752923
http://dx.doi.org/10.1186/s12967-019-2119-5
_version_ 1783472691065389056
author Weiss, Rebecca J.
Bates, Sara V.
Song, Ya’nan
Zhang, Yue
Herzberg, Emily M.
Chen, Yih-Chieh
Gong, Maryann
Chien, Isabel
Zhang, Lily
Murphy, Shawn N.
Gollub, Randy L.
Grant, P. Ellen
Ou, Yangming
author_facet Weiss, Rebecca J.
Bates, Sara V.
Song, Ya’nan
Zhang, Yue
Herzberg, Emily M.
Chen, Yih-Chieh
Gong, Maryann
Chien, Isabel
Zhang, Lily
Murphy, Shawn N.
Gollub, Randy L.
Grant, P. Ellen
Ou, Yangming
author_sort Weiss, Rebecca J.
collection PubMed
description BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration
format Online
Article
Text
id pubmed-6873573
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68735732019-11-25 Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy Weiss, Rebecca J. Bates, Sara V. Song, Ya’nan Zhang, Yue Herzberg, Emily M. Chen, Yih-Chieh Gong, Maryann Chien, Isabel Zhang, Lily Murphy, Shawn N. Gollub, Randy L. Grant, P. Ellen Ou, Yangming J Transl Med Protocol BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. Trial Registration Not applicable. This study protocol mines existing clinical data thus does not meet the ICMJE definition of a clinical trial that requires registration BioMed Central 2019-11-21 /pmc/articles/PMC6873573/ /pubmed/31752923 http://dx.doi.org/10.1186/s12967-019-2119-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Protocol
Weiss, Rebecca J.
Bates, Sara V.
Song, Ya’nan
Zhang, Yue
Herzberg, Emily M.
Chen, Yih-Chieh
Gong, Maryann
Chien, Isabel
Zhang, Lily
Murphy, Shawn N.
Gollub, Randy L.
Grant, P. Ellen
Ou, Yangming
Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_full Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_fullStr Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_full_unstemmed Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_short Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_sort mining multi-site clinical data to develop machine learning mri biomarkers: application to neonatal hypoxic ischemic encephalopathy
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873573/
https://www.ncbi.nlm.nih.gov/pubmed/31752923
http://dx.doi.org/10.1186/s12967-019-2119-5
work_keys_str_mv AT weissrebeccaj miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT batessarav miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT songyanan miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT zhangyue miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT herzbergemilym miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT chenyihchieh miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT gongmaryann miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT chienisabel miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT zhanglily miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT murphyshawnn miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT gollubrandyl miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT grantpellen miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT ouyangming miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy