Cargando…
Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy
In recent years, endomicroscopy has become increasingly used for diagnostic purposes and interventional guidance. It can provide intraoperative aids for real-time tissue characterization and can help to perform visual investigations aimed for example to discover epithelial cancers. Due to physical c...
Autores principales: | Ravì, Daniele, Szczotka, Agnieszka Barbara, Pereira, Stephen P, Vercauteren, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873642/ https://www.ncbi.nlm.nih.gov/pubmed/30769327 http://dx.doi.org/10.1016/j.media.2019.01.011 |
Ejemplares similares
-
Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction
por: Ravì, Daniele, et al.
Publicado: (2018) -
Learning from irregularly sampled data for endomicroscopy super-resolution: a comparative study of sparse and dense approaches
por: Szczotka, Agnieszka Barbara, et al.
Publicado: (2020) -
An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency
por: Delaunay, Rémi, et al.
Publicado: (2021) -
Spatial gradient consistency for unsupervised learning of hyperspectral demosaicking: application to surgical imaging
por: Li, Peichao, et al.
Publicado: (2023) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021)