Cargando…
MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage
MOTIVATION: Sequencing technologies allow the sequencing of microbial communities directly from the environment without prior culturing. Because assembly typically produces only genome fragments, also known as contigs, it is crucial to group them into putative species for further taxonomic profiling...
Autores principales: | Qian, Jia, Comin, Matteo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873667/ https://www.ncbi.nlm.nih.gov/pubmed/31757198 http://dx.doi.org/10.1186/s12859-019-2904-4 |
Ejemplares similares
-
MetaCRS: unsupervised clustering of contigs with the recursive strategy of reducing metagenomic dataset’s complexity
por: Jiang, Zhongjun, et al.
Publicado: (2022) -
MetaDecoder: a novel method for clustering metagenomic contigs
por: Liu, Cong-Cong, et al.
Publicado: (2022) -
An Integrated Pipeline for Annotation and Visualization of Metagenomic Contigs
por: Dong, Xiaoli, et al.
Publicado: (2019) -
Fast and sensitive taxonomic assignment to metagenomic contigs
por: Mirdita, M, et al.
Publicado: (2021) -
MetaConClust - Unsupervised Binning of Metagenomics Data using Consensus Clustering
por: Sinha, Dipro, et al.
Publicado: (2022)