Cargando…

Searching for simple rules in Pseudomonas aeruginosa biofilm formation

OBJECTIVE: Living cells display complex and non-linear behaviors, especially when posed to environmental threats. Here, to understand the self-organizing cooperative behavior of a microorganism Pseudomonas aeruginosa, we developed a discrete spatiotemporal cellular automata model based on simple phy...

Descripción completa

Detalles Bibliográficos
Autores principales: Deveaux, William, Selvarajoo, Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873713/
https://www.ncbi.nlm.nih.gov/pubmed/31752996
http://dx.doi.org/10.1186/s13104-019-4795-x
Descripción
Sumario:OBJECTIVE: Living cells display complex and non-linear behaviors, especially when posed to environmental threats. Here, to understand the self-organizing cooperative behavior of a microorganism Pseudomonas aeruginosa, we developed a discrete spatiotemporal cellular automata model based on simple physical rules, similar to Conway’s game of life. RESULTS: The time evolution model simulations were experimentally verified for P. aeruginosa biofilm for both control and antibiotic azithromycin (AZM) treated condition. Our model suggests that AZM regulates the single cell motility, thereby resulting in delayed, but not abolished, biofilm formation. In addition, the model highlights the importance of reproduction by cell to cell interaction is key for biofilm formation. Overall, this work highlights another example where biological evolutionary complexity may be interpreted using rules taken from theoretical disciplines.