Cargando…

Decrease in walking speed increases hip moment impulse in the frontal plane during the stance phase

BACKGROUND: Increased daily cumulative hip moment in the frontal plane (i.e., the product of hip moment impulse in the frontal plane during the stance phase and mean steps per day) is a risk factor for progression of hip osteoarthritis. Although hip osteoarthritis generally causes a decrease in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Inai, Takuma, Takabayashi, Tomoya, Edama, Mutsuaki, Kubo, Masayoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873874/
https://www.ncbi.nlm.nih.gov/pubmed/31763077
http://dx.doi.org/10.7717/peerj.8110
Descripción
Sumario:BACKGROUND: Increased daily cumulative hip moment in the frontal plane (i.e., the product of hip moment impulse in the frontal plane during the stance phase and mean steps per day) is a risk factor for progression of hip osteoarthritis. Although hip osteoarthritis generally causes a decrease in the walking speed, its effect on hip moment impulse in the frontal plane is unclear. The purpose of this study was to examine the relationship between decrease in walking speed and hip moment impulse in the frontal plane. METHODS: We used a public dataset of treadmill walking in 17 older adults (mean (SD) age: 63.2 (8.0) years). The subjects walked on the treadmill for 30 s under five conditions: (1) 40% of comfortable non-dimensional speed (CNDS), (2) 55% CNDS, (3) 70% CNDS, (4) 85% CNDS, and (5) 100% CNDS. The hip moment impulse in the frontal plane non-normalized (or normalized) to step length (Nm s/kg [or Nm s/(kg m)]) for each condition was calculated. Furthermore, the relationship between walking speed and hip moment impulse in the frontal plane non-normalized (or normalized) to step length was examined using regression analysis based on a previous study. RESULTS: A decrease in non-dimensional speed (i.e., walking speed) significantly increased the non-normalized (or normalized) hip moment impulse in the frontal plane during the stance phase. The relationship between walking speed and non-normalized (or normalized) hip moment impulse in the frontal plane was fitted by a second-order polynomial. DISCUSSION: This study revealed that a decrease in walking speed increased the non-normalized (or normalized) hip moment impulse in the frontal plane in healthy older adults. This finding is useful for understanding the relationship between walking speed and hip moment impulse in the frontal plane and suggests that a decrease in walking speed may actually increase the daily cumulative hip moment in the frontal plane of patients with hip osteoarthritis.