Cargando…

Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review

During its reproductive phase, rice is susceptible to heat stress. Heat events will occur at all stages during the reproductive phase of rice as a result of global warming. Moreover, rice yield traits respond differently to heat stress during panicle initiation, flowering and grain filling. The redu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Chao, Tang, She, Li, Ganghua, Wang, Shaohua, Fahad, Shah, Ding, Yanfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873875/
https://www.ncbi.nlm.nih.gov/pubmed/31763066
http://dx.doi.org/10.7717/peerj.7792
_version_ 1783472744036302848
author Wu, Chao
Tang, She
Li, Ganghua
Wang, Shaohua
Fahad, Shah
Ding, Yanfeng
author_facet Wu, Chao
Tang, She
Li, Ganghua
Wang, Shaohua
Fahad, Shah
Ding, Yanfeng
author_sort Wu, Chao
collection PubMed
description During its reproductive phase, rice is susceptible to heat stress. Heat events will occur at all stages during the reproductive phase of rice as a result of global warming. Moreover, rice yield traits respond differently to heat stress during panicle initiation, flowering and grain filling. The reduction in the number of spikelets per panicle of heat-stressed plants is due to the attenuated differentiation of secondary branches and their attached florets as well as the promotion of their degradation during the panicle-initiation stage but is not affected by heat stress thereafter. Spikelet sterility as a result of heat stress is attributed not only to physiological abnormalities in the reproductive organs during the flowering stage but also to structural and morphological abnormalities in reproductive organs during the panicle-initiation stage. The reduced grain weight of heat-stressed plants is due to a reduction in nonstructural carbohydrates, undeveloped vascular bundles, and a reduction in glume size during the panicle-initiation stage, while a shortened grain-filling duration, reduced grain-filling rate, and decreased grain width contribute to reduced grain weight during the grain-filling stage. Thus, screening and breeding rice varieties that have comprehensive tolerance to heat stress at all time points during their reproductive stage may be possible to withstand unpredictable heat events in the future. The responses of yield traits to heat stress are regulated by phytohormone levels, which are determined by phytohormone homeostasis. Currently, the biosynthesis and transport of phytohormones are the key processes that determine phytohormone levels in and grain yield of rice under heat stress. Studies on phytohormone homeostatic responses are needed to further reveal the key processes that determine phytohormone levels under heat conditions.
format Online
Article
Text
id pubmed-6873875
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-68738752019-11-23 Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review Wu, Chao Tang, She Li, Ganghua Wang, Shaohua Fahad, Shah Ding, Yanfeng PeerJ Agricultural Science During its reproductive phase, rice is susceptible to heat stress. Heat events will occur at all stages during the reproductive phase of rice as a result of global warming. Moreover, rice yield traits respond differently to heat stress during panicle initiation, flowering and grain filling. The reduction in the number of spikelets per panicle of heat-stressed plants is due to the attenuated differentiation of secondary branches and their attached florets as well as the promotion of their degradation during the panicle-initiation stage but is not affected by heat stress thereafter. Spikelet sterility as a result of heat stress is attributed not only to physiological abnormalities in the reproductive organs during the flowering stage but also to structural and morphological abnormalities in reproductive organs during the panicle-initiation stage. The reduced grain weight of heat-stressed plants is due to a reduction in nonstructural carbohydrates, undeveloped vascular bundles, and a reduction in glume size during the panicle-initiation stage, while a shortened grain-filling duration, reduced grain-filling rate, and decreased grain width contribute to reduced grain weight during the grain-filling stage. Thus, screening and breeding rice varieties that have comprehensive tolerance to heat stress at all time points during their reproductive stage may be possible to withstand unpredictable heat events in the future. The responses of yield traits to heat stress are regulated by phytohormone levels, which are determined by phytohormone homeostasis. Currently, the biosynthesis and transport of phytohormones are the key processes that determine phytohormone levels in and grain yield of rice under heat stress. Studies on phytohormone homeostatic responses are needed to further reveal the key processes that determine phytohormone levels under heat conditions. PeerJ Inc. 2019-11-19 /pmc/articles/PMC6873875/ /pubmed/31763066 http://dx.doi.org/10.7717/peerj.7792 Text en © 2019 Wu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Agricultural Science
Wu, Chao
Tang, She
Li, Ganghua
Wang, Shaohua
Fahad, Shah
Ding, Yanfeng
Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
title Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
title_full Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
title_fullStr Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
title_full_unstemmed Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
title_short Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
title_sort roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review
topic Agricultural Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873875/
https://www.ncbi.nlm.nih.gov/pubmed/31763066
http://dx.doi.org/10.7717/peerj.7792
work_keys_str_mv AT wuchao rolesofphytohormonechangesinthegrainyieldofriceplantsexposedtoheatareview
AT tangshe rolesofphytohormonechangesinthegrainyieldofriceplantsexposedtoheatareview
AT liganghua rolesofphytohormonechangesinthegrainyieldofriceplantsexposedtoheatareview
AT wangshaohua rolesofphytohormonechangesinthegrainyieldofriceplantsexposedtoheatareview
AT fahadshah rolesofphytohormonechangesinthegrainyieldofriceplantsexposedtoheatareview
AT dingyanfeng rolesofphytohormonechangesinthegrainyieldofriceplantsexposedtoheatareview