Cargando…
Computational Model of Progression to Multiple Myeloma Identifies Optimum Screening Strategies
PURPOSE: Recent advances have uncovered therapeutic interventions that might reduce the risk of progression of premalignant diagnoses, such as monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM). It remains unclear how to best screen populations at risk and how to eval...
Autores principales: | Altrock, Philipp M., Ferlic, Jeremy, Galla, Tobias, Tomasson, Michael H., Michor, Franziska |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873949/ https://www.ncbi.nlm.nih.gov/pubmed/30652561 http://dx.doi.org/10.1200/CCI.17.00131 |
Ejemplares similares
-
Mathematical modeling identifies optimum lapatinib dosing schedules for the treatment of glioblastoma patients
por: Stein, Shayna, et al.
Publicado: (2018) -
Computational modeling of pancreatic cancer patients receiving FOLFIRINOX and gemcitabine-based therapies identifies optimum intervention strategies
por: Yamamoto, Kimiyo N., et al.
Publicado: (2019) -
Dose-Dependent Mutation Rates Determine Optimum Erlotinib Dosing Strategies for EGFR Mutant Non-Small Cell Lung Cancer Patients
por: Liu, Lin L., et al.
Publicado: (2015) -
A Race between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (epi)genetic Instability
por: Iwami, Shingo, et al.
Publicado: (2012) -
Fixation in finite populations evolving in fluctuating environments
por: Ashcroft, Peter, et al.
Publicado: (2014)