Cargando…
Platform-Independent Classification System to Predict Molecular Subtypes of High-Grade Serous Ovarian Carcinoma
PURPOSE: Molecular cancer subtyping is an important tool in predicting prognosis and developing novel precision medicine approaches. We developed a novel platform-independent gene expression–based classification system for molecular subtyping of patients with high-grade serous ovarian carcinoma (HGS...
Autores principales: | Shilpi, Arunima, Kandpal, Manoj, Ji, Yanrong, Seagle, Brandon L., Shahabi, Shohreh, Davuluri, Ramana V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Clinical Oncology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873993/ https://www.ncbi.nlm.nih.gov/pubmed/31002564 http://dx.doi.org/10.1200/CCI.18.00096 |
Ejemplares similares
-
Association of increased primary breast tumor AGR2 with decreased disease-specific survival
por: Ann, Phoebe, et al.
Publicado: (2018) -
Orthogonal Proteomic Platforms and Their Implications for the Stable Classification of High-Grade Serous Ovarian Cancer Subtypes
por: Thomas, Stefani N., et al.
Publicado: (2020) -
Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms
por: Dapas, Matthew, et al.
Publicado: (2017) -
Integrated Multi-Omic Analysis Reveals Immunosuppressive Phenotype Associated with Poor Outcomes in High-Grade Serous Ovarian Cancer
por: Keathley, Russell, et al.
Publicado: (2023) -
Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping
por: Jung, Segun, et al.
Publicado: (2015)