Cargando…
A mathematical model of honey bee colony dynamics to predict the effect of pollen on colony failure
The decline in colony populations of the honey bee, known as the Colony Collapse Disorder (CCD), is a global concern. Numerous studies have reported possible causes, including pesticides, parasites, and nutritional stress. Poor nutrition affects the immune system at both the individual and colony le...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874302/ https://www.ncbi.nlm.nih.gov/pubmed/31756236 http://dx.doi.org/10.1371/journal.pone.0225632 |
Sumario: | The decline in colony populations of the honey bee, known as the Colony Collapse Disorder (CCD), is a global concern. Numerous studies have reported possible causes, including pesticides, parasites, and nutritional stress. Poor nutrition affects the immune system at both the individual and colony level, amplifying effects of other stress factors. Pollen is the only source of ten amino acids that are essential to honey bee development, brood rearing and reproduction. This paper presents a new mathematical model to explore the effect of pollen on honey bee colony dynamics. In this model, we considered pollen and nectar as the required food for the colony. The effect of pollen and nectar collected by foragers was evaluated at different mortality rates of pupa, pollen and nectar foragers. |
---|