Cargando…
Interleukin 21 (IL-21) regulates chronic allograft vasculopathy (CAV) in murine heart allograft rejection
IL-21 is the most recently discovered common gamma-chain cytokine that promotes persistent T-cell responses in chronic infections, autoimmunity and cancer. However, the therapeutic potential of inhibiting the IL-21-BATF signaling axis, particularly in transplant rejection, remains unclear. We used h...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874341/ https://www.ncbi.nlm.nih.gov/pubmed/31756235 http://dx.doi.org/10.1371/journal.pone.0225624 |
Sumario: | IL-21 is the most recently discovered common gamma-chain cytokine that promotes persistent T-cell responses in chronic infections, autoimmunity and cancer. However, the therapeutic potential of inhibiting the IL-21-BATF signaling axis, particularly in transplant rejection, remains unclear. We used heart transplant models to examine the effects of IL-21 blockade in prevention of chronic cardiac allograft vasculopathy (CAV) using genetic knock-out and therapeutic approaches. Both wild-type C57BL/6 and IL-21-/- strains acutely rejected Balb/c skin grafts and once immunized with this skin graft, rejected Balb/c heart allografts in an accelerated fashion. However, when transplanted with heart grafts from the class-II major histocompatibility complex mutant, B6(bm12) mice; wild-type recipients developed CAV, while IL-21-/- recipients were protected, even at day 100 post-transplant. Similarly, BATF-/- recipients, lacking the transcription factor BATF responsible for IL-21 production, did not develop CAV in B6-bm12 heart allografts. Strikingly, in a transient treatment protocol, the development of CAV in wild-type recipients of B6-bm12 hearts allografts was blocked by the administration of IL-21 receptor fusion protein (R-Fc). Thus, we demonstrate that CAV is regulated at least in part by IL-21 signaling and its blockade by genetic approaches or therapy with IL-21R-Fc prevents CAV in mice. |
---|