Cargando…
Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer
The aim of this work was to investigate radiomic analysis of contrast and non-contrast enhanced planning CT images of oesophageal cancer (OC) patients in terms of stability, dimensionality and contrast agent dependency. The prognostic significance of CT-based radiomic features was also evaluated. Di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874382/ https://www.ncbi.nlm.nih.gov/pubmed/31756181 http://dx.doi.org/10.1371/journal.pone.0225550 |
Sumario: | The aim of this work was to investigate radiomic analysis of contrast and non-contrast enhanced planning CT images of oesophageal cancer (OC) patients in terms of stability, dimensionality and contrast agent dependency. The prognostic significance of CT-based radiomic features was also evaluated. Different 2D and 3D radiomic features were extracted from contrast and non-contrast enhanced CT images of 213 patients from the multi-centre SCOPE1 randomised controlled trial (RCT) in OC. Feature stability was evaluated by randomly dividing patients into three groups and identifying textures with similar distributions among groups with a Kruskal-Wallis analysis. A paired two-sided Wilcoxon signed rank test was used to assess for significant differences in the remaining corresponding 2D and 3D stable features. A prognostic model was constructed using clinical characteristics and remaining filtered features. The discriminative ability of significant variables was tested using Kaplan-Meier analysis. A total of 238 2D and 3D radiomic features were computed from oesophageal CT images. More than 75 features were stable if extracted from homogeneous cohort (contrast or non-contrast enhanced CT images) and inhomogeneous cohort (contrast and non-contrast enhanced CT images). Among the remaining corresponding stable features computed from both cohorts, only 4 features did not show a statistically significant difference if obtained in 2D or in 3D (p-value < 0.05). A Cox regression model constructed using 5 clinical variables (age, sex, tumour, node and metastasis (TNM) stage, WHO performance status and contrast administration) and 4 radiomic variables (inverse variance(GLCM), large distance emphasis(GLDZM), zone distance non uniformity norm(GLDZM), zone distance variance(GLDZM)), identified one radiomic feature (zone distance variance(GLDZM)) that was significantly associated with overall survival (p-value = 0.032, HR = 1.25, 95% CI = 1.02–1.52). A significant difference in overall survival between groups was found when considering a threshold of zone distance variance(GLDZM) equals to 1.70 (X(2) = 7.692, df = 1, p-value = 0.006). Zone distance variance(GLDZM) was identified as the only stable CT radiomic feature statistically correlated with overall survival, independent of dimensionality and contrast administration. This feature was able to identify high-risk patients and if validated, could be the subject of a future clinical trial aiming to improve clinical decision making and personalise OC treatment. |
---|