Cargando…

Electrically driven optical interferometry with spins in silicon carbide

Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can e...

Descripción completa

Detalles Bibliográficos
Autores principales: Miao, Kevin C., Bourassa, Alexandre, Anderson, Christopher P., Whiteley, Samuel J., Crook, Alexander L., Bayliss, Sam L., Wolfowicz, Gary, Thiering, Gergő, Udvarhelyi, Péter, Ivády, Viktor, Abe, Hiroshi, Ohshima, Takeshi, Gali, Ádám, Awschalom, David D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874486/
https://www.ncbi.nlm.nih.gov/pubmed/31803839
http://dx.doi.org/10.1126/sciadv.aay0527
_version_ 1783472844862128128
author Miao, Kevin C.
Bourassa, Alexandre
Anderson, Christopher P.
Whiteley, Samuel J.
Crook, Alexander L.
Bayliss, Sam L.
Wolfowicz, Gary
Thiering, Gergő
Udvarhelyi, Péter
Ivády, Viktor
Abe, Hiroshi
Ohshima, Takeshi
Gali, Ádám
Awschalom, David D.
author_facet Miao, Kevin C.
Bourassa, Alexandre
Anderson, Christopher P.
Whiteley, Samuel J.
Crook, Alexander L.
Bayliss, Sam L.
Wolfowicz, Gary
Thiering, Gergő
Udvarhelyi, Péter
Ivády, Viktor
Abe, Hiroshi
Ohshima, Takeshi
Gali, Ádám
Awschalom, David D.
author_sort Miao, Kevin C.
collection PubMed
description Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy’s symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount.
format Online
Article
Text
id pubmed-6874486
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-68744862019-12-04 Electrically driven optical interferometry with spins in silicon carbide Miao, Kevin C. Bourassa, Alexandre Anderson, Christopher P. Whiteley, Samuel J. Crook, Alexander L. Bayliss, Sam L. Wolfowicz, Gary Thiering, Gergő Udvarhelyi, Péter Ivády, Viktor Abe, Hiroshi Ohshima, Takeshi Gali, Ádám Awschalom, David D. Sci Adv Research Articles Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy’s symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount. American Association for the Advancement of Science 2019-11-22 /pmc/articles/PMC6874486/ /pubmed/31803839 http://dx.doi.org/10.1126/sciadv.aay0527 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Miao, Kevin C.
Bourassa, Alexandre
Anderson, Christopher P.
Whiteley, Samuel J.
Crook, Alexander L.
Bayliss, Sam L.
Wolfowicz, Gary
Thiering, Gergő
Udvarhelyi, Péter
Ivády, Viktor
Abe, Hiroshi
Ohshima, Takeshi
Gali, Ádám
Awschalom, David D.
Electrically driven optical interferometry with spins in silicon carbide
title Electrically driven optical interferometry with spins in silicon carbide
title_full Electrically driven optical interferometry with spins in silicon carbide
title_fullStr Electrically driven optical interferometry with spins in silicon carbide
title_full_unstemmed Electrically driven optical interferometry with spins in silicon carbide
title_short Electrically driven optical interferometry with spins in silicon carbide
title_sort electrically driven optical interferometry with spins in silicon carbide
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874486/
https://www.ncbi.nlm.nih.gov/pubmed/31803839
http://dx.doi.org/10.1126/sciadv.aay0527
work_keys_str_mv AT miaokevinc electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT bourassaalexandre electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT andersonchristopherp electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT whiteleysamuelj electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT crookalexanderl electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT baylisssaml electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT wolfowiczgary electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT thieringgergo electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT udvarhelyipeter electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT ivadyviktor electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT abehiroshi electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT ohshimatakeshi electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT galiadam electricallydrivenopticalinterferometrywithspinsinsiliconcarbide
AT awschalomdavidd electricallydrivenopticalinterferometrywithspinsinsiliconcarbide