Cargando…
Electrically driven optical interferometry with spins in silicon carbide
Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can e...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874486/ https://www.ncbi.nlm.nih.gov/pubmed/31803839 http://dx.doi.org/10.1126/sciadv.aay0527 |
_version_ | 1783472844862128128 |
---|---|
author | Miao, Kevin C. Bourassa, Alexandre Anderson, Christopher P. Whiteley, Samuel J. Crook, Alexander L. Bayliss, Sam L. Wolfowicz, Gary Thiering, Gergő Udvarhelyi, Péter Ivády, Viktor Abe, Hiroshi Ohshima, Takeshi Gali, Ádám Awschalom, David D. |
author_facet | Miao, Kevin C. Bourassa, Alexandre Anderson, Christopher P. Whiteley, Samuel J. Crook, Alexander L. Bayliss, Sam L. Wolfowicz, Gary Thiering, Gergő Udvarhelyi, Péter Ivády, Viktor Abe, Hiroshi Ohshima, Takeshi Gali, Ádám Awschalom, David D. |
author_sort | Miao, Kevin C. |
collection | PubMed |
description | Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy’s symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount. |
format | Online Article Text |
id | pubmed-6874486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-68744862019-12-04 Electrically driven optical interferometry with spins in silicon carbide Miao, Kevin C. Bourassa, Alexandre Anderson, Christopher P. Whiteley, Samuel J. Crook, Alexander L. Bayliss, Sam L. Wolfowicz, Gary Thiering, Gergő Udvarhelyi, Péter Ivády, Viktor Abe, Hiroshi Ohshima, Takeshi Gali, Ádám Awschalom, David D. Sci Adv Research Articles Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin’s weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy’s excited-state orbitals and induce Landau-Zener-Stückelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy’s symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount. American Association for the Advancement of Science 2019-11-22 /pmc/articles/PMC6874486/ /pubmed/31803839 http://dx.doi.org/10.1126/sciadv.aay0527 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Miao, Kevin C. Bourassa, Alexandre Anderson, Christopher P. Whiteley, Samuel J. Crook, Alexander L. Bayliss, Sam L. Wolfowicz, Gary Thiering, Gergő Udvarhelyi, Péter Ivády, Viktor Abe, Hiroshi Ohshima, Takeshi Gali, Ádám Awschalom, David D. Electrically driven optical interferometry with spins in silicon carbide |
title | Electrically driven optical interferometry with spins in silicon carbide |
title_full | Electrically driven optical interferometry with spins in silicon carbide |
title_fullStr | Electrically driven optical interferometry with spins in silicon carbide |
title_full_unstemmed | Electrically driven optical interferometry with spins in silicon carbide |
title_short | Electrically driven optical interferometry with spins in silicon carbide |
title_sort | electrically driven optical interferometry with spins in silicon carbide |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874486/ https://www.ncbi.nlm.nih.gov/pubmed/31803839 http://dx.doi.org/10.1126/sciadv.aay0527 |
work_keys_str_mv | AT miaokevinc electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT bourassaalexandre electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT andersonchristopherp electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT whiteleysamuelj electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT crookalexanderl electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT baylisssaml electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT wolfowiczgary electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT thieringgergo electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT udvarhelyipeter electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT ivadyviktor electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT abehiroshi electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT ohshimatakeshi electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT galiadam electricallydrivenopticalinterferometrywithspinsinsiliconcarbide AT awschalomdavidd electricallydrivenopticalinterferometrywithspinsinsiliconcarbide |