Cargando…

Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice

BACKGROUND: The emerging role of inflammation in the initiation and maintenance of neuropathic pain has been confirmed. Previous studies have reported that miR138 has neuroprotective and anti-inflammatory effects in animal models of spinal cord injury and in human coronary artery endothelial cell in...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Benfan, Gao, Jie, Ouyang, Yeling, Hu, Zhiqiang, Chen, Xiangdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874503/
https://www.ncbi.nlm.nih.gov/pubmed/31819598
http://dx.doi.org/10.2147/JPR.S219462
_version_ 1783472847474130944
author Zhu, Benfan
Gao, Jie
Ouyang, Yeling
Hu, Zhiqiang
Chen, Xiangdong
author_facet Zhu, Benfan
Gao, Jie
Ouyang, Yeling
Hu, Zhiqiang
Chen, Xiangdong
author_sort Zhu, Benfan
collection PubMed
description BACKGROUND: The emerging role of inflammation in the initiation and maintenance of neuropathic pain has been confirmed. Previous studies have reported that miR138 has neuroprotective and anti-inflammatory effects in animal models of spinal cord injury and in human coronary artery endothelial cell injury, while its effect on neuropathic pain is still not known. As the mechanism of neuropathic pain remains unclear, we investigated whether miR138 is involved in the development of neuropathic pain and the role of miR138 in the modulation of inflammation in the spinal cord in a mouse model of neuropathic pain induced by spared sciatic nerve injury (SNI). MATERIALS AND METHODS: Firstly, the expression of miR138 in spinal cord was evaluated on days 1, 3, 5, 7, 9 and 14 after SNI. And then, LV-miR-control and LV-miR138 were intrathecally injected 1 week before the surgery followed by investigation of the expression of miR138, mechanical allodynia and thermal hyperalgesia on day 1, 3, 5, 7, 9, 14 after SNI. Ipsilateral L4-L6 spinal cord tissue was harvested on day 14 post-SNI and detected by Western blotting, enzyme-linked immunosorbent assay or immunohischemistry. RESULTS: We observed decreased expression of miR138 and increased expression of proinflammatory cytokines, along with activated microglia, astrocytes and nuclear factor-κВ (NF-κВ), in the spinal cord dorsal horn after SNI. Moreover, the intrathecal upregulation of miR138 significantly alleviated SNI-induced mechanical allodynia and thermal hyperalgesia, downregulated the production of proinflammatory cytokines, and deactivated microglia, astrocytes and NF-κВ. CONCLUSION: The results indicate that miR138 contributes to the development of neuropathic pain and that the overexpression of miR138 alleviates pain hypersensitivity by inhibiting proinflammatory cytokine production and glial activation, which suggests a novel target for reducing neuropathic pain.
format Online
Article
Text
id pubmed-6874503
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-68745032019-12-09 Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice Zhu, Benfan Gao, Jie Ouyang, Yeling Hu, Zhiqiang Chen, Xiangdong J Pain Res Original Research BACKGROUND: The emerging role of inflammation in the initiation and maintenance of neuropathic pain has been confirmed. Previous studies have reported that miR138 has neuroprotective and anti-inflammatory effects in animal models of spinal cord injury and in human coronary artery endothelial cell injury, while its effect on neuropathic pain is still not known. As the mechanism of neuropathic pain remains unclear, we investigated whether miR138 is involved in the development of neuropathic pain and the role of miR138 in the modulation of inflammation in the spinal cord in a mouse model of neuropathic pain induced by spared sciatic nerve injury (SNI). MATERIALS AND METHODS: Firstly, the expression of miR138 in spinal cord was evaluated on days 1, 3, 5, 7, 9 and 14 after SNI. And then, LV-miR-control and LV-miR138 were intrathecally injected 1 week before the surgery followed by investigation of the expression of miR138, mechanical allodynia and thermal hyperalgesia on day 1, 3, 5, 7, 9, 14 after SNI. Ipsilateral L4-L6 spinal cord tissue was harvested on day 14 post-SNI and detected by Western blotting, enzyme-linked immunosorbent assay or immunohischemistry. RESULTS: We observed decreased expression of miR138 and increased expression of proinflammatory cytokines, along with activated microglia, astrocytes and nuclear factor-κВ (NF-κВ), in the spinal cord dorsal horn after SNI. Moreover, the intrathecal upregulation of miR138 significantly alleviated SNI-induced mechanical allodynia and thermal hyperalgesia, downregulated the production of proinflammatory cytokines, and deactivated microglia, astrocytes and NF-κВ. CONCLUSION: The results indicate that miR138 contributes to the development of neuropathic pain and that the overexpression of miR138 alleviates pain hypersensitivity by inhibiting proinflammatory cytokine production and glial activation, which suggests a novel target for reducing neuropathic pain. Dove 2019-11-18 /pmc/articles/PMC6874503/ /pubmed/31819598 http://dx.doi.org/10.2147/JPR.S219462 Text en © 2019 Zhu et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Zhu, Benfan
Gao, Jie
Ouyang, Yeling
Hu, Zhiqiang
Chen, Xiangdong
Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice
title Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice
title_full Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice
title_fullStr Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice
title_full_unstemmed Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice
title_short Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice
title_sort overexpression of mir138 ameliorates spared sciatic nerve injury-induced neuropathic pain through the anti-inflammatory response in mice
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874503/
https://www.ncbi.nlm.nih.gov/pubmed/31819598
http://dx.doi.org/10.2147/JPR.S219462
work_keys_str_mv AT zhubenfan overexpressionofmir138amelioratessparedsciaticnerveinjuryinducedneuropathicpainthroughtheantiinflammatoryresponseinmice
AT gaojie overexpressionofmir138amelioratessparedsciaticnerveinjuryinducedneuropathicpainthroughtheantiinflammatoryresponseinmice
AT ouyangyeling overexpressionofmir138amelioratessparedsciaticnerveinjuryinducedneuropathicpainthroughtheantiinflammatoryresponseinmice
AT huzhiqiang overexpressionofmir138amelioratessparedsciaticnerveinjuryinducedneuropathicpainthroughtheantiinflammatoryresponseinmice
AT chenxiangdong overexpressionofmir138amelioratessparedsciaticnerveinjuryinducedneuropathicpainthroughtheantiinflammatoryresponseinmice