Cargando…

Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants

Plants perceive and respond to volatile signals in their environment. Herbivore-infested plants release volatile organic compounds (VOCs) which can initiate systemic defense reactions within the plant and contribute to plant-plant communication. Here, for Ipomoea batatas (sweet potato) leaves we sho...

Descripción completa

Detalles Bibliográficos
Autores principales: Meents, Anja K., Chen, Shi-Peng, Reichelt, Michael, Lu, Hsueh-Han, Bartram, Stefan, Yeh, Kai-Wun, Mithöfer, Axel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874613/
https://www.ncbi.nlm.nih.gov/pubmed/31758060
http://dx.doi.org/10.1038/s41598-019-53946-0
Descripción
Sumario:Plants perceive and respond to volatile signals in their environment. Herbivore-infested plants release volatile organic compounds (VOCs) which can initiate systemic defense reactions within the plant and contribute to plant-plant communication. Here, for Ipomoea batatas (sweet potato) leaves we show that among various herbivory-induced plant volatiles, (E)-4,8–dimethyl–1,3,7-nonatriene (DMNT) had the highest abundance of all emitted compounds. This homoterpene was found being sufficient for a volatile-mediated systemic induction of defensive Sporamin protease inhibitor activity in neighboring sweet potato plants. The systemic induction is jasmonate independent and does not need any priming-related challenge. Induced emission and responsiveness to DMNT is restricted to a herbivory-resistant cultivar (Tainong 57), while a susceptible cultivar, Tainong 66, neither emitted amounts comparable to Tainong 57, nor showed reaction to DMNT. This is consistent with the finding that Spodoptera larvae feeding on DMNT-exposed cultivars gain significantly less weight on Tainong 57 compared to Tainong 66. Our results indicate a highly specific, single volatile-mediated plant-plant communication in sweet potato.